Highlights from the 2012 National Survey of Science and Mathematics

Education

Eric R. Banilower
P. Sean Smith

January 9, 2013

$$
\frac{\text { har izConc }}{\text { RE S EAR CH, INC. }}
$$

Formative Assessment

- Take a minute and jot down your answers.
- Turn to a neighbor and discuss your predictions.

$$
\frac{\text { har izorl }}{\text { RE SEAR CH, INC. }}
$$

Overview

About the Study

- Two-stage sample that targeted:
- 2,000 schools (public and private)
- Over 10,000 teachers
- Purposefully oversampled teachers of advanced mathematics, chemistry, and physics
- Four main instruments:
- Science program questionnaire
- Mathematics program questionnaire
- Science teacher questionnaire
- Mathematics teacher questionnaire

Endorsing Organizations

- American Association of Physics Teachers
- American Chemical Society, Education Division
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- Association of State Supervisors of Mathematics
- Center for the Study of Mathematics Curriculum
- Council of State Science Supervisors
- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Catholic Education Association
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers Association
- National Education Association
- National School Boards Association
- National Science Education Leadership Association
- National Science Teachers

Association

- We got a really good response rate:
- 1,504 schools agreed to participate
- Over 8o percent of program representatives
- Over 75 percent of sampled teachers
- Sampling and analysis techniques used allow for nationally representative estimates

Teacher Background

Percent Female

Percent Non-White

$$
\frac{\text { har izorr }}{\text { RE SEAR CH, INC. }}
$$

Question 1

About what percentage of high school science teachers have a college degree in a science discipline?
a. 50 percent
b. 60 percent
c. 70 percent
d. $8 o$ percent

Science Teacher Degrees

Science Teacher Degrees

Science Coursework

High School Science Teachers

$$
\frac{\text { har izorr }}{\text { RE SEAR CH, INC. }}
$$

Question 2

About what percentage of high school mathematics teachers have a college degree in mathematics?
a. 50 percent
b. 60 percent
c. 70 percent
d. $8 o$ percent

Mathematics Teacher Degrees

Mathematics Teacher Degrees

Mathematics Coursework

Question 3

About what percentage of science and mathematics teachers believe students should be given definitions for new vocabulary at the beginning of instruction on an idea?
a. 20 percent
b. 40 percent
c. 60 percent
d. 80 percent

Beliefs about Teaching and Learning

- Over three-quarters of science and mathematics teachers at each grade level agree that inadequacies in students' background can be overcome by effective teaching.
- A large proportion believe that students learn best in classes of similar abilities:

	Science	Mathematics
Elementary	32	51
Middle	48	69
High	65	77

[^0]Views about Effective Instruction Vary: Science

- Three-quarters at each grade range agree that it is better to focus on ideas in depth, even if it means covering fewer topics.
- About 40 percent think teachers should explain ideas to students before having them consider evidence for it.
- More than half think hands-on/laboratory activities should be used primarily to reinforce ideas students have already learned.
- Over 70 percent think students should be given definitions for new vocab at the beginning of instruction.

Views about Effective Instruction Vary: Math

- Over three-quarters at each grade range agree that it is better to focus on ideas in depth, even if it means covering fewer topics.
- 37-48 percent think teachers should explain ideas to students before having them investigate the idea.
- 39-52 percent think hands-on activities/manipulatives should be used primarily to reinforce ideas already learned.
- 81-90 think students should be given definitions of new vocabulary at the beginning of instruction

$$
\frac{\text { har izorr }}{\text { RE S EA/RCH, INC. }}
$$

Question 4

What percentage of elementary teachers feel very well prepared to teach:
I. Mathematics?
II. Reading/language arts?
III. Science?
IV. Social Studies?

Perceptions of Preparedness: Elementary

Very Well Prepared

Perceptions of Preparedness: Elementary

Very Well Prepared

Perceptions of Preparedness: Elementary

Very Well Prepared

$$
\frac{\text { har izorr }}{\text { RE S EA/RCH, INC. }}
$$

Question 5

What percentage of teachers at each grade level feel very well prepared to teach engineering?
I. Elementary
II. Middle
III. High

Preparedness to Teach Engineering

Very Well Prepared

$$
\frac{\text { har izorl }}{\text { RESEARCH, INC. }}
$$

Professional Development

Question 6
About what percentage of elementary teachers have participated in science-specific PD in the last three years?
a. 30 percent
b. 40 percent
c. 50 percent
d. 60 percent

Teachers Participating in PD in Last 3 Yrs

Less than 6 hours of PD in last 3 years

More than 35 hours of PD in last 3 years

$$
\frac{\text { har izorl }}{\text { RE S EAKCH, INC. }}
$$

Professional Learning Communities (PLCs)

PLCs Offered at Schools

$$
\frac{\text { har izorl }}{\text { RESEARCH, INC. }}
$$

Question 7

About what percentage of high school mathematics teachers have participated in a mathematics-specific professional learning community (PLC) in the last three years?
a. 60 percent
b. 70 percent
c. 80 percent
d. 90 percent

Participation in PLCs

The Typical PLC...

- Requires participation
- Meets for the entire year
- Meets at least twice a month
- Has a designated leader from within the school
- Limits participation to teachers from within school
- Includes teachers from multiple grade levels

Emphasis of PLCs

	Percent of Schools with PLCs	
	Science	Mathematics
Analyze student assessment results	73	83
Analyze instructional materials	65	65
Plan lessons together	67	62
Analyze classroom artifacts	37	34
Engage in science/mathematics investigations	25	30

$$
\frac{\text { Rar incorl }}{\text { RESEARCH, IN C. }}
$$

Science and Mathematics Courses

Elementary Science and Mathematics

- Nearly all elementary teachers teach mathematics every day of every week.
- Science is a different story:

	Percent of Classes	
	K-3	$\mathbf{4 - 6}$
All/Most Days, every week	20	35
Three or fewer days, every week	39	33
Some weeks, but not every week	41	32

Question 8

On average, how many minutes per day in elementary classes is devoted to instruction in:
I. Mathematics?
II. Reading/language arts?
III. Science?
IV. Social Studies?

Instructional Time: Elementary Classes

AP Science

- 47 percent of high schools offer at least one AP science course:
- 43 percent offer AP Biology
- 34 percent offer AP Chemistry
- 22 percent offer AP Physics B
- 17 percent offer AP Environmental Science
- 12 percent offer AP Physics C

$$
\frac{\text { har izorl }}{\text { RESEATKCH, INC. }}
$$

Middle School Mathematics Courses

- About $3 / 4$ of middle schools offer Algebra 1
- Only about $1 / 4$ offer Geometry
- Majority of middle school students do not take either one in middle school

$$
\frac{\text { Rar izorl }}{\text { RE S EA/KCH, INC. }}
$$

AP Mathematics

- Over half of high schools offer AP mathematics
- 52 percent offer AP Calculus AB
- 27 percent offer AP Statistics
- 23 percent offer AP Calculus BC

$$
\frac{\text { har izorl }}{\text { RE S EAR CH, INC. }}
$$

Question 9

Compared to lower level courses, students in advanced science and mathematics courses are:
a. Less diverse.
b. Just as diverse.
c. More diverse.

$$
\frac{\text { Rar izorl }}{\text { RESEATRCH, INC. }}
$$

Student Enrollment: HS Science

Percent Female

- Non-College Prep 46
- $1^{\text {st }}$ Year Biology

49

- $1^{\text {st }}$ Year Chemistry 51
- $1^{\text {st }}$ Year Physics
- Advanced Courses 49

54

Student Enrollment: HS Science

Percent Non-Asian Minority

- Non-College Prep 36
- $1^{\text {st }}$ Year Biology 33
- $1^{\text {st }}$ Year Chemistry

30

- $1^{\text {st }}$ Year Physics

23

- Advanced Courses 21

$$
\frac{\text { har izorl }}{\text { RE SEAR CH, INC. }}
$$

Student Enrollment: HS Mathematics

Percent Female

- Non-College Prep
- Formal Level 1
- Formal Level 2
- Formal Level 3

51

- Formal Level 4
- College-Credit Courses

$$
\frac{\text { Ras ing }}{\text { R E S EAR CH, IN C. }}
$$

Student Enrollment: HS Mathematics

 Percent Non-Asian Minority- Non-College Prep
- Formal Level 1

45

- Formal Level 2

31

- Formal Level 3

27

- Formal Level 4
- College-Credit Courses17

$$
\frac{\text { Rar incorl }}{\text { RESEARCH, IN C. }}
$$

Science and Mathematics Instruction

Teacher Control: 2000

Teacher Control: 2012

Reform-Oriented Instructional Objectives

Objectives by Prior Achievement Level

Weekly Instructional Practices: Science

Weekly Instructional Practices: Math

$$
\frac{\text { har izorl }}{\text { RESEATRCH, INC. }}
$$

Question 10

Compared to classes composed of high achieving students, classes of low achieving students are:
a. Less likely to experience reform-oriented teaching.
b. Just as likely to experience reform-oriented teaching.
c. More likely to experience reform-oriented teaching.

Reform-Oriented Teaching Practices

Practices by Prior Achievement Level

$$
\frac{\text { har izorr }}{\text { RE SEAR CH, INC. }}
$$

Influence of Textbooks

$$
\frac{\text { har izorl }}{\text { RESEARCH, INC. }}
$$

Question 11

About what percentage of middle school science classes use a published textbook or module as the primary instructional material?
a. 40 percent
b. 60 percent
c. 80 percent
d. 100 percent

Classes Using a Published Text

Publisher Market ShareScience Materials

Publisher Market ShareMathematics Materials

Science Materials Used Most of the Time

	Percent of Science Classes		
	Elementary	Middle	High
Mainly commercially published textbook			
One textbook	26	34	52
Multiple textbooks	5	11	7
Mainly commercially published modules			
Modules from a single publisher	12	11	2
Modules from multiple publishers	4	3	2
Other			
Mix of commercially published textbooks and commercially published modules	22	20	15
Non-commercially published materials	31	20	23

How Teachers Use their Materials

- More than half use the textbook to guide both the overall and detailed structure of the unit.
- A large proportion also supplement and subset their textbook.

Skipping Because They Know of Something Better

Why Teachers Supplement

- Over go percent supplement to differentiate instruction and provide additional practice.
- Over half supplement for test prep.
- A substantial proportion supplement because their pacing guide tells them to.

$$
\frac{\text { har izorr }}{\text { RE SEAR CH, INC. }}
$$

Adequacy of Resources

$$
\frac{\text { har izorr }}{\text { RE SEAR CH, I NC. }}
$$

Question 12

What is the median amount spent per pupil on science equipment, supplies, and software (total) in:

Elementary schools?
Middle schools?
High schools?

Median \$ Per Pupil Spent in Science

Median \$ Per Pupil Spent in Mathematics

Median \$ per Pupil Spent in Science

	PPS
Community Type	
Rural	4.58
Suburban	2.98
Urban	2.45
Region	
Midwest	3.25
Northeast	5.18
South	2.93
West	2.19

Median \$ per Pupil Spent in Mathematics

	PPS
Community Type	
Rural	3.78
Suburban	2.49
Urban	1.91
Region	
Midwest	3.18
Northeast	4.15
South	2.42
West	1.45

$$
\frac{\text { har izorr }}{\text { RE S E A/RCH, INC. }}
$$

Adequacy of Resources

Science

- Consumable supplies
- Equipment
- Facilities
- Instructional technology

Mathematics

- Consumable supplies
- Manipulatives
- Measurement tools
- Instructional technology

Adequacy of Resources

$$
\frac{\text { har izorl }}{\text { RESEARCH, INC. }}
$$

Influence of State Standards

$$
\frac{\text { har izorl }}{\text { RESEARCH, INC. }}
$$

Question 13

In roughly what percentage of high schools is there a school-wide effort to align mathematics instruction with state mathematics standards?
a. 40 percent
b. 60 percent
c. 80 percent
d. 100 percent

Influence of State Science Standards

| | Percent of Schools | | |
| :--- | :---: | :---: | :---: | :---: |
| Standards have been thoroughly discussed by | Elementary | Middle | High |
| science teachers in this school | 69 | 77 | 83 |
| School-wide effort to align science instruction
 with the state science standards | 80 | 83 | 82 |
| Most science teachers in this school teach to
 the state standards | 83 | 86 | 81 |
| District organizes science professional
 development based on state standards | 56 | 52 | 54 |

Influence of State Mathematics Standards

| | Percent of Schools | | |
| :--- | :---: | :---: | :---: | :---: |
| School-wide effort to align mathematics
 instruction with the state mathematics
 standards | Elementary | Middle | High |
| Most mathematics teachers in this school
 teach to the state standards | 91 | 91 | 85 |
| Standards have been thoroughly discussed by
 mathematics teachers in this school | 85 | 90 | 84 |
| District organizes mathematics professional
 development based on state standards | 70 | 86 | 83 |

Focus on Standards

$$
\frac{\text { har izorl }}{\text { RE SEAR CH, INC. }}
$$

Summary

- Elementary science continues to be the forgotten step-child of education
- Inequities with regard to instruction, resources, and course-taking opportunities continue to exist
- While textbooks drive much of instruction, teachers deviate from them quite a bit, raising questions about instructional coherence.

Dissemination

- Technical reports:
- Overall
- Compendium of Tables
- Subject-specific reports
- Conferences:
- NARST (2 symposia and a paper)
- NCTM
- AAPT
- Journal articles
- Equity
- Predictors of practice
- Endorsing organizations
- Project website: horizon-research.com/2012nssme
- Social media

For More Information

http://www.horizon-research.com/2012nssme/

> http://www.facebook.com/2012NSSME
https://twitter.com/2012NSSME
nssme@horizon-research.com

This presentation is based upon work supported by the National Science Foundation under Grant No. DRL1008228. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

[^0]: 2012 National Survey of Science and Mathematics Education

