The Status K-12 Science Education:

Are We Ready for the Next Generation

 Science Standards?NSTA 2014
Sean Smith
Horizon Research, Inc.

This presentation is based upon work supported by the National Science Foundation under Grant No. DRL-1008228. Any opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation.

About the 2012 National Survey of Science and Mathematics Education

- Two-stage sample that targeted:
$-2,000$ schools (public and private)
- Over 10,000 K-12 teachers
- Excellent response rate:
$-1,504$ schools agreed to participate
- Over 80 percent of program representatives
- Over 75 percent of sampled teachers

Questionnaire Topics

- Teacher
- Background
- Opinions
- Instructional practices and resources
- School
- Programs
- Policies
- Resources

Session Overview

- Status areas
- K-12 science teachers
- Professional development
- Instruction
- Instructional resources
- Lens of readiness to implement the NGSS
- Discussion

The Power of Standards

Elementary Schools Agreeing with Various Statements Regarding State Science Standards

Middle Schools Agreeing with Various Statements Regarding State Science Standards

Most science teachers in this school teach to state standards

School-wide effort to align instruction with state science standards

State standards have been discussed by science teachers in this school

District/diocese organizes science PD based on state standards

High Schools Agreeing with Various Statements Regarding State Science Standards

State standards have been discussed by science teachers in this school

School-wide effort to align instruction with state science standards

Most science teachers in this school teach to state standards

District/diocese organizes science PD based on state standards

Vision of the NGSS

- Practices
- Cross-cutting concepts
- Disciplinary core ideas

K-12 Science Teachers

Science Teacher Degrees, by Grade Range

Elementary Science Teachers with at Least One College Course in Various Science Disciplines

Middle School Science Teachers with at Least One College Course in Various Science Disciplines

2012 NSSME

High School Science Teachers with at Least One College Course in Various Science Disciplines

Elementary Science Teachers Meeting NSTA Course-Background Recommendations

Elementary Teachers Considering Themselves Very Well Prepared to Teach Various Science Disciplines

2012 NSSME
THE 2012 NATIONAL SURVEY OF SCIENCE AND MATHEMATICS EDUCATION

Middle School General/Integrated Science Teachers Meeting NSTA Course-Background Standards

High School Science Teachers with Degree in Field or 3+ Courses Beyond Introductory

Middle School Science Teachers with Degree in Field or 3+ Courses Beyond Introductory

Middle School Science Teachers Considering Themselves Very Well Prepared to Teach Earth/Space Science Topics

High School Science Teachers Considering Themselves Very Well Prepared to Teach Earth/Space Science Topics

Middle School Science Teachers Considering Themselves Very Well Prepared to Teach Biology/Life Science Topics

High School Science Teachers Considering Themselves Very Well Prepared to Teach Biology/Life Science Topics

Middle School Science Teachers Considering Themselves Very Well Prepared to Teach Chemistry Topics

High School Science Teachers Considering Themselves Very Well Prepared to Teach Chemistry Topics

2012 NSSME

High School Science Teachers Considering Themselves Very Well Prepared to Teach Physics Topics

Secondary Teachers Considering Themselves Very Well Prepared to Teach Engineering

Discussion Question

How would you characterize teachers' perceptions of their preparedness versus their actual preparedness? What are the implications of differences between the perceived and the actual?

Teacher Pedagogical Beliefs

	Percent of Teachers Agreeing		
Most class periods should provide opportunities for students to share their thinking and reasoning	K-5	$\mathbf{6 - 8}$	$\mathbf{9 - 1 2}$
Most class periods should conclude with a summary of the key ideas addressed	96	95	92
Students should be provided with the purpose for a lesson as it begins	93	90	88
Most class periods should include some review of previously covered ideas and skills	91	89	86

	Percent of Teachers Agreeing		
At the beginning of instruction on a science idea, students should be provided with definitions for new scientific vocabulary that will be used	85	78	$9-12$
Hands-on/laboratory activities should be used primarily to reinforce a science idea that the students have already learned	K-5	$6-8$	90
Teachers should explain an idea to students before having them consider evidence that relates to the idea	45	41	39

Teacher Professional Development

Science Teachers' Time Spent on Science-

 Focused PD in Last 3 years, by Grade Range

Elementary School Science Teachers Participating in Various PD Activities in the Last 3 Years

Middle School Science Teachers Participating in Various PD Activities in the Last 3 Years

High School Science Teachers Participating in Various PD Activities in the Last 3 Years

Science PD Workshops Offered Locally in the Last 3 Years, by Grade Range

Science Teacher Study Groups Offered at Schools in the Last 3 Years, by Grade Range

Frequency of Science Teacher Study Groups

Duration of Science Teacher Study Groups

2012 NSSME
THE 2012 NATIONAL SURVEY OF SCIENCE AND MATHEMATICS EDUCATION

Description of Activities in Typical Science Teacher Study Groups

Schools Providing One-on-One Science Coaching

Discussion Question

Implementing the NGSS will likely require substantial professional development for teachers.

1. How would you describe the nature/format of the PD teachers currently attend?
2. What obstacles and opportunities do you see in these data on science professional development?

Science Instruction

Frequency with Which Self-Contained Elementary Classes Receive Science Instruction

2012 NSSME

Average Number of Minutes Spent Teaching Subjects in Self-Contained Classes, by Grades

Elementary School Science Classes Using Various Activities at Least Once a Week

Middle School Science Classes Using Various Activities at Least Once a Week

High School Science Classes Using Various Activities at Least Once a Week

Elementary School Science Classes Participating in Various Activities in the Most Recent Lesson

Middle School Science Classes Participating in Various Activities in the Most Recent Lesson

High School Science Classes Participating in Various Activities in the Most Recent Lesson

Discussion Question

The NGSS do not make specific recommendations about instructional strategies; however, by integrating DCIs, cross-cutting concepts, and practices, they signal that some instructional approaches are better aligned to the standards than others. What areas of alignment and misalignment do you see in these data on science instruction?

Instructional Resources

Science Classes Using Commercially Published Textbooks/Programs, by Grade Range

Instructional Materials Used in Elementary School Science Classes

Instructional Materials Used in Middle School Science Classes

Instructional Materials Used in High School Science Classes

Market Share of Commercial Textbook Publishers in Science Classes, by Grade Range

Ways Science Teachers Substantially Used Their Textbook in the Most Recent Unit, by Grade Range

■ Used activities to supplement textbook
■ Used textbook to guide the overall structure/content of unit
\square Picked important material and skipped the rest
Followed textbook to guide the detailed structure/content of unit

Discussion Question

Clearly, commercially published instructional materials exert substantial influence on science instruction. What are the components of a message we should deliver to publishers as they create the next generation of instructional materials?

Briefing Book

www.horizon-research.com/2012nssme

The following presentation slides are available in PowerPoint format and require Microsoft PowerPoint for use.

Study Overview		
Teacher Background and Beliefs	$\underline{\text { Science }}$	
Professional Development	$\underline{\text { Science }}$	
Science and Mathematics Courses	$\underline{\text { Science }}$	
Mathematics		
Instruction	$\underline{\text { Science }}$	Mathematics
Instructional Resources	$\underline{\text { Science }}$	Mathematics
Factors Affecting Instruction	$\underline{\text { Science }}$	Mathematics

Wrap-up and Transition to Panel Discussion

