STEM Education in the U.S.

Scaling STEM Conference 2013
P. Sean Smith
Horizon Research, Inc. Chapel Hill, NC

This presentation is based upon work supported by the National Science Foundation under Grant No. DRL-1008228. Any opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation.

2012 NSSME
THE 2012 NATIONAL SURVEY OF
SCIENCE AND MATHEMATICS EDUCATION

Question 1

On average, how many minutes per day in elementary classes is devoted to instruction in:
I. Reading/language arts?
II. Mathematics?
III. Science?
IV. Social Studies?

Instructional Time: Elementary Classes

2012 NSSME

Elementary Science and Mathematics

- Nearly all elementary teachers teach mathematics every day of every week.
- Science is a different story:

	Percent of Classes	
	K-3	4-6
All/Most Days, every week	20	35
Three or fewer days, every week	39	33
Some weeks, but not every week	41	32

Question 2

What percentage of elementary teachers feel very well prepared to teach:

I. Reading/language arts?
II. Mathematics?
III. Science?
IV. Social Studies?

Perceptions of Preparedness: Elementary

Very Well Prepared

Perceptions of Preparedness: Elementary

Very Well Prepared

Perceptions of Preparedness: Elementary

Very Well Prepared

Question 3

What percentage of teachers at each grade level feel very well prepared to teach engineering?
I. Elementary
II. Middle
III. High

Preparedness to Teach Engineering

Very Well Prepared

2012 NSSME
THE 2012 NATIONAL SURVEY OF
SCIENCE AND MATHEMATICS EDUCATION

Session Structure

- Introductions
- About the 2012 National Survey of Science and Mathematics Education
- The STEM Teaching Force
- STEM instruction
- Professional Development
- Systemic Reform

About the 2012 National Survey of Science and Mathematics Education

- Two-stage sample that targeted:
$-2,000$ schools (public and private)
- Over 10,000 K-12 teachers
- Excellent response rate:
- 1,504 schools agreed to participate
- Over 80 percent of program representatives
- Over 75 percent of sampled teachers

The STEM Teaching Force

SCIENCE AND MATHEMATICS EDUCATION

Percent Non-White

2012 NSSME
THE 2012 NATIONAL SURVEY OF
SCIENCE AND MATHEMATICS EDUCATION

Question 4

About what percentage of high school science teachers have a college degree in a science discipline?
a. 50 percent
b. 60 percent
c. 70 percent
d. 80 percent

Science Teacher Degrees

2012 NSSME

Science Coursework

High School Science Teachers

2012 NSSME

Question 5

About what percentage of high school mathematics teachers have a college degree in mathematics?
a. 50 percent
b. 60 percent
c. 70 percent
d. 80 percent

Mathematics Teacher Degrees

2012 NSSME

Mathematics Coursework

$\frac{\text { Rarsizan }}{\text { RESEAKCH.INC. }}$

Teacher Beliefs

2012 NSSME
SCIENCE AND MATHEMATICS EDUCATION

Question 6

About what percentage of science and mathematics teachers believe students should be given definitions for new vocabulary at the beginning of instruction on an idea?
a. 20 percent
b. 40 percent
c. 60 percent
d. 80 percent

Beliefs about Teaching and Learning

- Over three-quarters of science and mathematics teachers at each grade level agree that inadequacies in students' background can be overcome by effective teaching.
- A large proportion believe that students learn best in classes of similar abilities:

	Science	Mathematics
Elementary	32	51
Middle	48	69
High	65	77

$\frac{\text { harigon }}{\text { RESEABCH.INC }}$
2012 NSSME

Views about Effective Instruction Vary: Science

- Three-quarters at each grade range agree that it is better to focus on ideas in depth, even if it means covering fewer topics.
- About 40 percent think teachers should explain ideas to students before having them consider evidence for it.
- More than half think hands-on/laboratory activities should be used primarily to reinforce ideas students have already learned.
- Over 70 percent think students should be given definitions for new vocabulary at the beginning of instruction.

Views about Effective Instruction Vary: Mathematics

- Over three-quarters at each grade range agree that it is better to focus on ideas in depth, even if it means covering fewer topics.
- 37-48 percent think teachers should explain ideas to students before having them investigate the idea.
- 39-52 percent think hands-on activities/manipulatives should be used primarily to reinforce ideas already learned.
- 81-90 think students should be given definitions of new vocabulary at the beginning of instruction

The Future STEM Workforce

SCIENCE AND MATHEMATICS EDUCATION

Question 7

Compared to lower-level high school courses, students in advanced science and mathematics courses are:
a. Less diverse.
b. Just as diverse.
c. More diverse.

Student Enrollment: HS Science

Percent Female

- Non-College Prep

46

- $1^{\text {st }}$ Year Biology

49

- $1^{\text {st }}$ Year Chemistry

51

- $1^{\text {st }}$ Year Physics

49

- Advanced Courses

54

2012 NSSME I

Student Enrollment: HS Science

Percent Non-Asian Minority

- Non-College Prep 36
- $1^{\text {st }}$ Year Biology

33

- $1^{\text {st }}$ Year Chemistry 30
- $1^{\text {st }}$ Year Physics

23

- Advanced Courses

21

2012 NSSME $\left\lvert\, \begin{aligned} & \text { THE } 2012 \text { NATIONAL SURVEY OF } \\ & \text { SCIENCE AND MATHEMATICS EDUCATION }\end{aligned}\right.$

Student Enrollment: HS Mathematics

Percent Female

- Non-College Prep

```
42
```

- Formal Level 1

48

- Formal Level 2

50

- Formal Level 3 51
- Formal Level 4

48

- College-Credit Courses48

2012 NSSME

Student Enrollment: HS Mathematics

Percent Non-Asian Minority

- Non-College Prep 45
- Formal Level 1

39

- Formal Level 2

31

- Formal Level 3 27
- Formal Level 4 22
- College-Credit Courses

17

2012 NSSME

Science and Mathematics Instruction

SCIENCE AND MATHEMATICS EDUCATION

Teacher Control: 2000

2012 NSSME |

Teacher Control: 2012

2012 NSSME

Weekly Instructional Practices: Science

[^0]2012 NSSME

Weekly Instructional Practices: Math

2012 NSSME

Influence of Textbooks

Question 8

About what percentage of middle school science classes use a published textbook or module as the primary instructional material?
a. 40 percent
b. 60 percent
c. 80 percent
d. 100 percent

Classes Using a Published Text

Publisher Market ShareScience Materials

Publisher Market ShareMathematics Materials

How Teachers Use Their Materials

- More than half use the textbook to guide both the overall and detailed structure of the unit.
- A large proportion also supplement and subset their textbook.

Why Teachers Supplement

- Over 90 percent supplement to differentiate instruction and provide additional practice.
- Over half supplement for test prep.
- A substantial proportion supplement because their pacing guide tells them to.

STEM PD

2012 NSSME
SCIENCE AND MATHEMATICS EDUCATION

Features of High Quality PD

- Focuses on content knowledge
- Emphasizes active learning
- Promotes coherence
- Provides a large amount of training sustained over time
- Encourages collaboration among teachers.

[^1]
Question 9

About what percentage of elementary teachers have participated in science-specific PD in the last three years?
a. 30 percent
b. 40 percent
c. 50 percent
d. 60 percent

Teachers Participating in PD in Last 3 Years

2012 NSSME

Less than 6 hours of PD in last 3 years

2012 NSSME

More than 35 hours of PD in last 3 years

2012 NSSME

Question 10

About what percentage of high school mathematics teachers have participated in a mathematics-specific professional learning community (PLC) in the last three years?
a. 60 percent
b. 70 percent
c. 80 percent
d. 90 percent

Science Teacher PD in Last 3 Years

Math Teacher PD in Last 3 Years

Features of High Quality PD

- Focuses on content knowledge
- Emphasizes active learning
- Promotes coherence
- Provides a large amount of training sustained over time
- Encourages collaboration among teachers

[^2]
Participation in PLCs

The Typical PLC...

- Requires participation
- Meets for the entire year
- Meets at least twice a month
- Has a designated leader from within the school
- Limits participation to teachers from within school
- Includes teachers from multiple grade levels

Emphasis of PLCs

	Percent of Schools with PLCs	
	Science	Mathematics
Analyze student assessment results	73	83
Analyze instructional materials	65	65
Plan lessons together	67	62
Analyze classroom artifacts	37	34
Engage in science/mathematics investigations	25	30

2012 NSSME

Professional Development Resources

TE-MAT

Teacher Education Materials Project

An online database of reviews of materials for K-12 mathematics and science professional development providers

National Science Foundation Grant \#: ESI 9619139

What's In TE-MAT

- Materials designed to support the work of K12 mathematics and science professional development providers
- A conceptual framework that highlights key elements critical to professional development.

www.te-mat.org

2012 NSSME I scance mo miremics suction

Systems Approach to Change

Components of the System

- Classroom instruction
- Pre-service teacher preparation and induction
- Professional development
- Administration
- Instructional materials
- Assessments
- District and state policies
- Curriculum
- Accountability

Where Can You Make a Difference?

- Classroom instruction
- Pre-service teacher preparation and induction
- Professional development
- Administration
- Instructional materials
- Assessments
- District and state policies
- Curriculum
- Accountability

For More Information on the 2012 NSSME

http://www.horizon-research.com/2012nssme/

Acknowledgement

This presentation is based upon work supported by the National Science Foundation under Grant No. DRL-1008228. Any opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation.

[^0]: $\frac{\text { Karsizan }}{\text { RESEARCH, INC. }}$

[^1]: (Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., \& Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American educational research journal, 38(4), 915-945.)

[^2]: (Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., \& Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American educational research journal, 38(4), 915-945.)

