SECTION Two

 Science TeAcher Questionnaire

 Science TeAcher Questionnaire}

Science Teacher Questionnaire
Science Teacher Questionnaire Tables

2012 National Survey of Science and Mathematics Education Science Teacher Questionnaire

Section A. Teacher Background and Opinions

1. How many years have you taught prior to this school year: [Enter each response as a whole number (for example: 15).]
a. any subject at the $\mathrm{K}-12$ level? \qquad
b. science at the $\mathrm{K}-12$ level? \qquad
c. at this school, any subject? \qquad
2. At what grade levels do you currently teach science? [Select all that apply.]

\square	K-5
\square	$6-8$
\square	$9-12$
\square	You do not currently teach science

3. [Presented to self-contained teachers only]

Which best describes the science instruction provided to the entire class?

- Do not consider pull-out instruction that some students may receive for remediation or enrichment.
- Do not consider instruction provided to individual or small groups of students, for example by an English-language specialist, special educator, or teacher assistant.

\circ	This class receives science instruction only from you. [Presented only to teachers who answered in Q2 that they teach science]
\circ	This class receives science instruction from you and another teacher (for example: a science specialist or a teacher you team with). [Presented only to teachers who answered in Q2 that they teach science]

4. [Presented to self-contained teachers only]

Which best describes your science teaching?

\circ	I teach science all or most days, every week of the year.
\circ	I teach science every week, but typically three or fewer days each week.
\circ	I teach science some weeks, but typically not every week. [Skip to Q6]

5. [Presented to self-contained teachers only]

In a typical week, how many days do you teach lessons on each of the following subjects and how many minutes per week are spent on each subject? [Enter each response as a whole number (for example: 5, 150).]

		Number of days per week
a.	Mathematics	
botal number of minutes per week		
b.	Science	
Cocial Studies		
d.	Reading/Language Arts	

6. [Presented to self-contained teachers only]

In a typical year, how many weeks do you teach lessons on each of the following subjects and how many minutes per week are spent on each subject? [Enter each response as a whole number (for example: 36, 150).]

| | Number of weeks per year | Average number of minutes per
 week when taught |
| :--- | :--- | :--- | :---: |
| a. Mathematics | | |
| b. Science | | |
| c. Social Studies | | |
| d. Reading/Language Arts | | |

7. [Presented to non-self-contained teachers only]

In a typical week, how many different classes of each of the following do you teach?

- If you meet with the same class of students multiple times per week, count that class only once.
- If you teach the same science or engineering course to multiple classes of students, count each class separately.
- Select one on each row.

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Science (may include some engineering content)	\circ										
Engineering (may include some science content)	\circ										

8. [Presented to non-self-contained teachers only]

For each science class you teach, select the course type and enter the number of students enrolled. Enter the classes in the order that you teach them. For teachers on an alternating day block schedule, please order your classes starting with the first class you teach this week. [Select one course type on each row and enter the number of students as a whole number (for example: 25).]

Class	Course Type	Number of Students
Your 1 ${ }^{\text {st }}$ science class:		
Your 2 ${ }^{\text {nd }}$ science class:		
\ldots		
Your $\mathrm{N}^{\text {th }}$ science class:		

Course Type List	
1	Science (Grades K-5)
2	Life Science (Grades 6-8)
3	Earth Science (Grades 6-8)
4	Physical Science (Grades 6-8)
5	General or Integrated Science (Grades 6-8)
6	Coordinated or Integrated Science including General Science and Physical Science (Grades 9-12)
7	Earth/Space Science (Grades 9-12)
8	Life Science/Biology (Grades 9-12)
9	Environmental Science/Ecology (Grades 9-12)
10	Chemistry (Grades 9-12)
11	Physics (Grades 9-12)

9. [Presented to non-self-contained grades 9-12 teachers only]

For each grades 9-12 science class you teach, select the level that best describes the content addressed in that class.

- Use the descriptions below to help identify the level.
- Select one on each row.

Level	Description
Non-college Prep	A course that does not count towards the entrance requirements of a 4-year college. For example: Life Science.
1st Year College Prep, Including Honors	The first course in a discipline that counts towards the entrance requirements of a 4-year college. For example: Biology, Chemistry I.
2nd Year Advanced	A course typically taken after a 1 1t year college prep course. For example: Anatomy and Physiology, Advanced Chemistry, Physics II. Include Advanced Placement, International Baccalaureate, and concurrent college and high school credit/dual enrollment.

Class	Course Type	Non-college Prep	$1^{\text {st }}$ Year College Prep, Including Honors	$2^{\text {nd }} \text { Year }$ Advanced
Your 1 ${ }^{\text {st }}$ science class:	[course type(s) teacher selected in Q8]	\bigcirc	\bigcirc	\bigcirc
Your $2^{\text {nd }}$ science class:		\bigcirc	\bigcirc	\bigcirc
...				
Your Nth science class:		\bigcirc	\bigcirc	\bigcirc

10. [Presented to non-self-contained teachers only]

Later in this questionnaire, we will ask you questions about you're your randomly selected science class, which you indicated was [level and course type teacher selected in Q8/9]. What is your school's title for this course?
11. Have you been awarded one or more bachelor's and/or graduate degrees in the following fields? (With regard to bachelor's degrees, count only areas in which you majored.) [Select one on each row.]

	Yes	No
a. Education, including science education	\circ	\circ
b. Natural Sciences and/or Engineering	\circ	\circ
c. Other, please specify	\circ	\circ

12. [Presented only to teachers that answered "Yes" to Q11a]

What type of education degree do you have? (With regard to bachelor's degrees, count only areas in which you majored.) [Select all that apply.]

\square	Elementary Education
\square	Mathematics Education
\square	Science Education
\square	Other Education, please specify. \square

13. [Presented only to teachers that answered "Yes" to Q11b]

What type of natural science and/or engineering degree do you have? (With regard to bachelor's degrees, count only areas in which you majored.) [Select all that apply.]

\square	Biology/Life Science
\square	Chemistry
\square	Earth/Space Science
\square	Engineering
\square	Environmental Science/Ecology
\square	Physics
\square	Other natural science, please specify \quad

14. Did you complete any of the following types of biology/life science courses at the undergraduate or graduate level? [Select one on each row.]

		Yes	No
a.	General/introductory biology/life science courses (for example: Biology I, Introduction to Biology)	\circ	\circ
b.	Biology/life science courses beyond the general/introductory level	\circ	\circ
c.	Biology/life science education courses	\circ	\circ

15. [Presented only to teachers that answered "Yes" to Q14b]

Please indicate which of the following biology/life science courses you completed (beyond a general/introductory course) at the undergraduate or graduate level. [Select all that apply.]

\square	Anatomy/Physiology
\square	Biochemistry
\square	Botany
\square	Cell Biology
\square	Ecology
\square	Evolution
\square	Genetics
\square	Microbiology
\square	Zoology
\square	Other biology/life science beyond the general/introductory level

16. Did you complete any of the following types of chemistry courses at the undergraduate or graduate level? [Select one on each row.]

		Yes	No
a.	General/introductory chemistry courses (for example: Chemistry I, Introduction to Chemistry)	\circ	\circ
b.	Chemistry courses beyond the general/introductory level	\circ	\circ
c.	Chemistry education courses	\circ	\circ

17. [Presented only to teachers that answered "Yes" to Q16b]

Please indicate which of the following chemistry courses you completed (beyond a general/introductory course) at the undergraduate or graduate level. [Select all that apply.]

\square	Analytical Chemistry
\square	Biochemistry
\square	Inorganic Chemistry
\square	Organic Chemistry
\square	Physical Chemistry
\square	Quantum Chemistry
\square	Other chemistry beyond the general/introductory level

18. Did you complete any of the following types of physics courses at the undergraduate or graduate level? [Select one on each row.]

	General/introductory physics courses (for example: Physics I, Introduction to Physics)	Yes	No
a.	0	\circ	
b.	Physics courses beyond the general/introductory level	\circ	\circ
c.	Physics education courses	\circ	\circ

19. [Presented only to teachers that answered "Yes" to Q18b]

Please indicate which of the following physics courses you completed (beyond a general/introductory course) at the undergraduate or graduate level. [Select all that apply.]

\square	Electricity and Magnetism
\square	Heat and Thermodynamics
\square	Mechanics
\square	Modern or Quantum Physics
\square	Nuclear Physics
\square	Optics
\square	Other physics beyond the general/introductory level

20. Did you complete any of the following types of Earth/space science courses at the undergraduate or graduate level? [Select one on each row.]

		Yes	No
a.	General/introductory Earth/space science courses (for example: Earth Science I, Introduction to Earth Science)	\circ	\circ
b.	Earth/space science courses beyond the general/introductory level	\circ	\circ
c.	Earth/space science education courses	\circ	\circ

21. [Presented only to teachers that answered "Yes" to Q20b]

Please indicate which of the following Earth/space science courses you completed (beyond a general/introductory course) at the undergraduate or graduate level. [Select all that apply.]

\square	Astronomy
\square	Geology
\square	Meteorology
\square	Oceanography
\square	Physical Geography
\square	Other Earth/space science beyond the general/introductory level

22. Did you complete any of the following types of environmental science courses at the undergraduate or graduate level? [Select one on each row.]

		Yes	No
a.	General/introductory environmental science courses (for example: Environmental Science I, Introduction to Environmental Science)	\circ	\circ
b.	Environmental science courses beyond the general/introductory level	\circ	\circ
c.	Environmental science education courses	\circ	\circ

23. [Presented only to teachers that answered "Yes" to Q22b]

Please indicate which of the following environmental science courses you completed (beyond a general/introductory course) at the undergraduate or graduate level. [Select all that apply.]

\square	Conservation Biology
\square	Ecology
\square	Forestry
\square	Hydrology
\square	Oceanography
\square	Toxicology
\square	Other environmental science beyond the general/introductory level

24. Did you complete one or more engineering courses at the undergraduate or graduate level?

\circ	Yes
\circ	No

25. [Presented only to teachers that answered "Yes" to Q24b] Please indicate which of the following types of engineering courses you completed at the undergraduate or graduate level. [Select all that apply.]

\square	Aerospace Engineering
\square	Bioengineering/Biomedical Engineering
\square	Chemical Engineering
\square	Civil Engineering
\square	Computer Engineering
\square	Electrical Engineering
\square	Industrial/Manufacturing Engineering
\square	Mechanical Engineering
\square	Other types of engineering courses

26. For each of the following areas, indicate the number of semester and/or quarter courses you completed.

- Count courses not credit hours.
- Include courses taken at the graduate or undergraduate level, as well as courses for which you received college credit while you were in high school.
- Count each course taken in high school for college credit as a one semester college course.
- Count courses that lasted multiple semesters or quarters as multiple courses.
- If your transcripts are not available, provide your best estimates.
- Enter your responses as whole numbers (for example: 3). You may either enter 0 (zero) or leave the box empty wherever applicable.

		Number of SEMESTER college courses	Number of QUARTER college courses
a.Interdisciplinary science (a single course that addresses content across multiple science subjects, such as biology, chemistry, physics and/or Earth science)			
b.	Biology/Life science		
c.	Chemistry		
d.	Physics		
e.	Earth/Space science		
f.	Environmental science		
g.	Engineering		
h.	Mathematics		

27. How many of the undergraduate and graduate level science courses you completed were taken at each of the following types of institutions? (Please do not include science education courses.) [Enter each response as a whole number (for example: 15).]
a. Two-year college, community college, and/or technical school \qquad
b. Four-year college and/or university \qquad
28. Which of the following best describes your teacher certification program?

\circ	An undergraduate program leading to a bachelor’s degree and a teaching credential
\circ	A post-baccalaureate credentialing program (no master’s degree awarded)
\circ	A master's program that also awarded a teaching credential
\circ	You did not have any formal teacher preparation

29. When did you last participate in professional development (sometimes called in-service education) focused on science or science teaching? (Include attendance at professional meetings, workshops, and conferences, as well as professional learning communities/lesson studies/teacher study groups. Do not include formal courses for which you received college credit or time you spent providing professional development for other teachers.)

\circ	In the last 3 years
\circ	$4-6$ years ago
\circ	$7-10$ years ago
\circ	More than 10 years ago
\circ	Never

30. In the last 3 years have you... [Select one on each row.]

		Yes	No
a.	attended a workshop on science or science teaching?	\circ	\circ
b.	attended a national, state, or regional science teacher association meeting?	\circ	\circ
c.	participated in a professional learning community/lesson study/teacher study group focused on science or science teaching?	\circ	\circ

31. What is the total amount of time you have spent on professional development in science or science teaching in the last 3 years? (Include attendance at professional meetings, workshops, and conferences, as well as professional learning communities/lesson studies/teacher study groups. Do not include formal courses for which you received college credit or time you spent providing professional development for other teachers.)

\circ	Less than 6 hours
\circ	$6-15$ hours
\circ	$16-35$ hours
\circ	More than 35 hours

32. Thinking about all of your science-related professional development in the last 3 years, to what extent does each of the following describe your experiences? [Select one on each row.]

	Not at all	Somewhat			To a great extent
a. You had opportunities to engage in science investigations.	(1)	(2)	(3)	(4)	(5)
b. You had opportunities to examine classroom artifacts (for example: student work samples).	(1)	(2)	(3)	(4)	(5)
c. You had opportunities to try out what you learned in your classroom and then talk about it as part of the professional development.	(1)	(2)	(3)	(4)	(5)
d. You worked closely with other science teachers from your school.	(1)	(2)	(3)	(4)	(5)
e. You worked closely with other science teachers who taught the same grade and/or subject whether or not they were from your school.	(1)	(2)	(3)	(4)	(5)
f. The professional development was a waste of your time.	(1)	(2)	(3)	(4)	(5)

33. When did you last take a formal course for college credit in each of the following areas? Do not count courses for which you received only Continuing Education Units. [Select one on each row.]

	In the last 3 years	$\mathbf{4 - 6}$ years ago	$\mathbf{7 - 1 0}$ years ago	More than 10 years ago	Never
a. \quad Science	\circ	\circ	\circ	\circ	\circ
b. \quad How to teach science	\circ	\circ	\circ	\circ	\circ
c. \quad Student teaching in science	\circ	\circ	\circ	\circ	\circ
d.Student teaching in other subjects	\circ	\circ	\circ	\circ	\circ

34. [Presented only to teachers that have participated in professional development in the last three years as indicated in Q29, OR took a course in "Science" or "How to teach science" in the last three years as indicated in q33a/b]
Considering all the opportunities to learn about science or the teaching of science (professional development and coursework) in the last 3 years, how much was each of the following emphasized? [Select one on each row.]

	Not at all	Somewhat			To a great extent
a. Deepening your own science content knowledge	(1)	(2)	(3)	(4)	(5)
b. Learning about difficulties that students may have with particular science ideas and procedures	(1)	(2)	(3)	(4)	(5)
c. Finding out what students think or already know about the key science ideas prior to instruction on those ideas	(1)	(2)	(3)	(4)	(5)
d. Implementing the science textbook/module to be used in your classroom	(1)	(2)	(3)	(4)	(5)
e. Planning instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	(1)	(2)	(3)	(4)	(5)
f. Monitoring student understanding during science instruction	(1)	(2)	(3)	(4)	(5)
g. Providing enrichment experiences for gifted students	(1)	(2)	(3)	(4)	(5)
h. Providing alternative science learning experiences for students with special needs	(1)	(2)	(3)	(4)	(5)
i. Teaching science to English-language learners	(1)	(2)	(3)	(4)	(5)
j. Assessing student understanding at the conclusion of instruction on a topic	(1)	(2)	(3)	(4)	(5)

35. In the last 3 years have you... [Select one on each row.]

	Yes	No	
a.	received feedback about your science teaching from a mentor/coach formally assigned by the school or district/diocese?	\circ	\circ
b.	served as a formally-assigned mentor/coach for science teaching? (Please do not include supervision of student teachers.)	\circ	\circ
c.	supervised a student teacher in your classroom?	\circ	\circ
d.	taught in-service workshops on science or science teaching?	\circ	\circ
e.	led a professional learning community/lesson study/teacher study group focused on science or science teaching?	\circ	\circ

36. [Presented only to grades $K-5$ teachers; sub-items e, f, and g for self-contained teachers only] Many teachers feel better prepared to teach some subject areas than others. How well prepared do you feel to teach each of the following subjects at the grade level(s) you teach, whether or not they are currently included in your teaching responsibilities? [Select one on each row.]

	Not adequately prepared	Somewhat prepared	Fairly well prepared	Very well prepared
a. Life Science	(1)	(2)	(3)	(4)
b. Earth Science	(1)	(2)	(3)	(4)
c. Physical Science	(1)	(2)	(3)	(4)
d. Engineering	(1)	(2)	(3)	(4)
e. Mathematics	(1)	(2)	(3)	(4)
f. Reading/Language Arts	(1)	(2)	(3)	(4)
g. Social Studies	(1)	(2)	(3)	(4)

37. [Presented only to grades 6-12 teachers; non-self-contained teachers shown only topics related to their randomly selected class and engineering; self-contained teachers shown all topics] Within science many teachers feel better prepared to teach some topics than others. How well prepared do you feel to teach each of the following topics at the grade level(s) you teach, whether or not they are currently included in your teaching responsibilities? [Select one on each row.]

	Not adequately prepared	Somewhat prepared	Fairly well prepared	Very well prepared
a. Earth/Space Science				
i. Earth's features and physical processes	(1)	(2)	(3)	(4)
ii. The solar system and the universe	(1)	(2)	(3)	(4)
iii. Climate and weather	(1)	(2)	(3)	(4)
b. Biology/Life Science				
i. Cell biology	(1)	(2)	(3)	(4)
ii. Structures and functions of organisms	(1)	(2)	(3)	(4)
iii. Ecology/ecosystems	(1)	(2)	(3)	(4)
iv. Genetics	(1)	(2)	(3)	(4)
v. Evolution	(1)	(2)	(3)	(4)
c. Chemistry				
i. Atomic structure	(1)	(2)	(3)	(4)
ii. Chemical bonding, equations, nomenclature, and reactions	(1)	(2)	(3)	(4)
iii. Elements, compounds, and mixtures	(1)	(2)	(3)	(4)
iv. The Periodic Table	(1)	(2)	(3)	(4)
v. Properties of solutions	(1)	(2)	(3)	(4)
vi. States, classes, and properties of matter	(1)	(2)	(3)	(4)
d. Physics				
i. Forces and motion	(1)	(2)	(3)	(4)
ii. Energy transfers, transformations, and conservation	(1)	(2)	(3)	(4)
iii. Properties and behaviors of waves	(1)	(2)	(3)	(4)
iv. Electricity and magnetism	(1)	(2)	(3)	(4)
v. Modern physics (for example: special relativity)	(1)	(2)	(3)	(4)
e. Engineering (for example: nature of engineering and technology, design processes, analyzing and improving technological systems, interactions between technology and society)	(1)	(2)	(3)	(4)
f. Environmental and resource issues (for example: land and water use, energy resources and consumption, sources and impacts of pollution)	(1)	(2)	(3)	(4)

38. How well prepared do you feel to do each of the following in your science instruction? [Select one on each row.]

	Not adequately prepared	Somewhat prepared	Fairly well prepared	Very well prepared
a. Plan instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	(1)	(2)	(3)	(4)
b. Teach science to students who have learning disabilities	(1)	(2)	(3)	(4)
c. Teach science to students who have physical disabilities	(1)	(2)	(3)	(4)
d. Teach science to English-language learners	(1)	(2)	(3)	(4)
e. Provide enrichment experiences for gifted students	(1)	(2)	(3)	(4)
f. Encourage students' interest in science and/or engineering	(1)	(2)	(3)	(4)
g. Encourage participation of females in science and/or engineering	(1)	(2)	(3)	(4)
h. Encourage participation of racial or ethnic minorities in science and/or engineering	(1)	(2)	(3)	(4)
i. Encourage participation of students from low socioeconomic backgrounds in science and/or engineering	(1)	(2)	(3)	(4)
j. Manage classroom discipline	(1)	(2)	(3)	(4)

39. Please provide your opinion about each of the following statements. [Select one on each row.]

		Strongly Disagree	Disagree	No Opinion	Agree	Strongly Agree
a.	Students learn science best in classes with students of similar abilities.	(1)	(2)	(3)	(4)	(5)
b.	Inadequacies in students’ science background can					
be overcome by effective teaching.						

Section B. Your Science Instruction

The rest of this questionnaire is about your science instruction in this class.
40. [Presented to non-self-contained teachers only]

On average, how many minutes per week does this class meet? [Enter your response as a whole number (for example: 300).] \qquad
41. Enter the number of students for each grade represented in this class. [Enter each response as a whole number (for example: 15).]

Kindergarten	
$1^{\text {st }}$ grade	
$2^{\text {td }}$ grade	
$3^{\text {td }}$ grade	
$4^{\text {th }}$ grade	
$5^{\text {th }}$ grade	
$6^{\text {th }}$ grade	
$7^{\text {th }}$ grade	
8^{th} grade	
9^{th} grade	
$10^{\text {th }}$ grade	
$11^{\text {th }}$ grade	
$12^{\text {th }}$ grade	

42. For the students in this class, indicate the number of males and females in this class in each of the following categories of race/ethnicity. [Enter each response as a whole number (for example: 15).]

		Males	Females
a. \quad American Indian or Alaska Native			
b. Asian			
c.	Black or African American		
d.	Hispanic/Latino		
e.	Native Hawaiian or Other Pacific Islander		
f.	White		
g.	Two or more races		

43. Which of the following best describes the prior science achievement levels of the students in this class relative to other students in this school?

\circ	Mostly low achievers
\circ	Mostly average achievers
\circ	Mostly high achievers
\circ	A mixture of levels

44. How much control do you have over each of the following aspects of science instruction in this class? [Select one on each row.]

	No Control		Moderate Control		Strong Control
a. Determining course goals and objectives	(1)	(2)	(3)	(4)	(5)
b. Selecting textbooks/modules	(1)	(2)	(3)	(4)	(5)
c. Selecting content, topics, and skills to be taught	(1)	(2)	(3)	(4)	(5)
d. Selecting teaching techniques	(1)	(2)	(3)	(4)	(5)
e. Determining the amount of homework to be assigned	(1)	(2)	(3)	(4)	(5)
f. Choosing criteria for grading student performance	(1)	(2)	(3)	(4)	(5)

45. Think about your plans for this class for the entire course/year. By the end of the course/year, how much emphasis will each of the following student objectives receive? [Select one on each row.]

		None	Minimal emphasis	Moderate emphasis	Heavy emphasis
a.	Memorizing science vocabulary and/or facts	(1)	(2)	(3)	(4)
b.	Understanding science concepts	(1)	(2)	(3)	(4)
c.	Learning science process skills (for example: observing, measuring)	(1)	(2)	(3)	(4)
d.	Learning about real-life applications of science	(1)	(2)	(3)	(4)
e.	Increasing students' interest in science	(1)	(2)	(3)	(4)
f.	Preparing for further study in science	(1)	(2)	(3)	(4)
g.	Learning test taking skills/strategies	(1)	(2)	(3)	(4)

46. How often do you do each of the following in your science instruction in this class? [Select one on each row.]

	Never	$\begin{gathered} \begin{array}{c} \text { Rarely } \\ \text { (for } \\ \text { example: } \end{array} \\ \text { A few } \\ \text { times a } \\ \text { year) } \\ \hline \end{gathered}$	Sometimes (for example: Once or twice a month)	Often (for example: Once or twice a week)	All or almost all science lessons
a. Explain science ideas to the whole class	(1)	(2)	(3)	(4)	(5)
b. Engage the whole class in discussions	(1)	(2)	(3)	(4)	(5)
c. Have students work in small groups	(1)	(2)	(3)	(4)	(5)
d. Do hands-on/laboratory activities	(1)	(2)	(3)	(4)	(5)
e. Engage the class in project-based learning (PBL) activities	(1)	(2)	(3)	(4)	(5)
f. Have students read from a science textbook, module, or other science-related material in class, either aloud or to themselves	(1)	(2)	(3)	(4)	(5)
g. Have students represent and/or analyze data using tables, charts, or graphs	(1)	(2)	(3)	(4)	(5)
h. Require students to supply evidence in support of their claims	(1)	(2)	(3)	(4)	(5)
i. Have students make formal presentations to the rest of the class (for example: on individual or group projects)	(1)	(2)	(3)	(4)	(5)
j. Have students write their reflections (for example: in their journals) in class or for homework	(1)	(2)	(3)	(4)	(5)
k. Give tests and/or quizzes that are predominantly short-answer (for example: multiple choice, true /false, fill in the blank)	(1)	(2)	(3)	${ }^{(4)}$	(5)
1. Give tests and/or quizzes that include constructed-	(1)	(2)	(3)	(4)	(5)
m. Focus on literacy skills (for example: informational reading or writing strategies)	(1)	(2)	(3)	(4)	(5)
n. Have students practice for standardized tests	(1)	(2)	(3)	(4)	(5)
o. Have students attend presentations by guest speakers focused on science and/or engineering in the workplace	(1)	(2)	(3)	(4)	(5)

47. Which best describes the availability of each of the following for small group (4-5 students) work in this class? [Select one on each row.]

		Do not have one per group available	At least one per group available upon request or in another room	At least one per group located in your classroom
a.	Personal computers, including laptops	\circ	\circ	\circ
b.Hand-held computers (for example: PDAs, tablets, smartphones, iPads)	\circ	\circ	\circ	
c.	Internet access	\circ	\circ	\circ
d.	Graphing calculators	\circ	\circ	\circ
e.	Other calculators	\circ	\circ	\circ
f.	Probes for collecting data (for example: motion sensors, temperature probes)	\circ	\circ	\circ
g.	Microscopes	\circ	\circ	\circ
h.	Classroom response system or "Clickers" (handheld devices used to respond electronically to questions in class)	\circ	\circ	\circ

48. For each of the following, are students expected to provide their own for use in this science class? [Select one on each row.]

		Yes
a.	Laptop computers	\circ
b.	Hand-held computers	\circ
c.	Graphing calculators	\circ
d.	Other calculators	\circ

49. How often do students use each of the following instructional technologies in this science class? [Select one on each row.]

	Never	Rarely (for example: A few times a year)	Sometimes (for example: Once or twice a month)	Often (for example: Once or twice a week)	All or almost all science lessons
a. Personal computers, including laptops	(1)	(2)	(3)	(4)	(5)
b. Hand-held computers	(1)	(2)	(3)	(4)	(5)
c. Internet	(1)	(2)	(3)	(4)	(5)
d. Calculators [Presented to grades K-5 teachers only]	(1)	(2)	(3)	(4)	(5)
e. Graphing calculators [Presented to grades 6-12 teachers only]	(1)	(2)	(3)	(4)	(5)
f. Probes for collecting data	(1)	(2)	(3)	(4)	(5)
g. Classroom response system or "Clickers"	(1)	(2)	(3)	(4)	(5)

50. Please indicate the availability of each of the following for your science instruction in this class. [Select one on each row.]

		Not available	Available in another room	Located in your classroom
a.	Lab tables	\circ	\circ	\circ
b.	Electric outlets	\circ	\circ	\circ
c.	Faucets and sinks	\circ	\circ	\circ
d.	Gas for burners [Presented to grades 9-12 teachers only]	\circ	\circ	\circ
e.	Fume hoods [Presented to grades 9-12 teachers only]	\circ	\circ	\circ

51. How often are students in this class required to take science tests that you did not develop yourself, for example state assessments or district benchmarks? (Do not include Advanced Placement or International Baccalaureate exams or students retaking a test because of failure.)

$○$	Never
$○$	Once a year
\bigcirc	Twice a year
\bigcirc	Three or four times a year
\bigcirc	Five or more times a year

52. How much science homework do you assign to this class in a typical week? (Do not include time that the class spends getting started on homework during class.)

\circ	Fewer than 15 minutes per week
\circ	$15-30$ minutes per week
\circ	$31-60$ minutes per week
\circ	$61-90$ minutes per week
\circ	$91-120$ minutes per week
\circ	$2-3$ hours per week
\circ	$3-4$ hours per week
\circ	More than 4 hours per week

53. Which best describes the instructional materials students most frequently use in this class?

Mainly commercially-published textbook(s)		
\circ	One textbook	
\circ	Multiple textbooks	
Mainly commercially-published modules		
\circ	Modules from a single publisher	
\circ	Modules from multiple publishers	
Other		
\circ	A roughly equal mix of commercially-published textbooks and commercially-published modules most of the time	
\circ	Non-commercially-published materials most of the time [Skip to Q58]	

54. Please indicate the title, author, most recent copyright year, and ISBN code of the textbook/module used by the students in this class.

- The 10 - or 13 -character ISBN code can be found on the copyright and/or the back cover of the textbook/module.
- Do not include the dashes when entering the ISBN.
- An example of the location of the ISBN is shown to the right.

Title:
First Author:

Year:
ISBN:
55. How would you rate the overall quality of this textbook/the modules used from this publisher?

\circ	Very poor
\circ	Poor
\circ	Fair
\circ	Good
\circ	Very good
\circ	Excellent

56. [Presented only to teachers who indicated using one commercially-published textbook or modules from a single publisher in Q53]
Over the course of the school year, approximately what percentage of the science instructional time will students in this class spend using this textbook/these modules?

\circ	Less than 25%
\circ	$25-49 \%$
\circ	$50-74 \%$
\circ	$75-90 \%$
\circ	More than 90%

57. [Presented only to teachers who indicated using one commercially-published textbook in Q53] Approximately what percentage of the chapters in this textbook will students in this class engage with during the school year?

\circ	Less than 25%
\circ	$25-49 \%$
\circ	$50-74 \%$
\circ	$75-90 \%$
\circ	More than 90%

58. Science courses may benefit from the availability of particular kinds of equipment (for example: microscopes, beakers, photogate timers, Bunsen burners). How adequate is the equipment you have available for teaching this science class?

\circ	Not adequate
\circ	
\bigcirc	Somewhat adequate
\circ	
\circ	Adequate

59. Science courses may benefit from the availability of particular kinds of instructional technology (for example: calculators, computers, probes/sensors). How adequate is the instructional technology you have available for teaching this science class?

\circ	Not adequate
\circ	
\bigcirc	Somewhat adequate
\circ	
\circ	Adequate

60. Science courses may benefit from the availability of particular kinds of consumable supplies (for example: chemicals, living organisms, batteries). How adequate are the consumable supplies you have available for teaching this science class?

\circ	Not adequate
\circ	
\circ	Somewhat adequate
\circ	
\circ	Adequate

61. Science courses may benefit from the availability of particular kinds of facilities (for example: lab tables, electric outlets, faucets and sinks). How adequate are the facilities you have available for teaching this science class?

$○$	Not adequate
\bigcirc	
\bigcirc	Somewhat adequate
\bigcirc	
\bigcirc	Adequate

62. In your opinion, how great a problem is each of the following for your science instruction in this class? [Select one on each row.]

		Not a significant problem	Somewhat of a problem	Serious problem
a.	Lack of access to computers	\circ	\circ	\circ
b.	Old age of computers	\circ	\circ	\circ
c.	Lack of access to the Internet	\circ	\circ	\circ
d.	Unreliability of the Internet connection	\circ	\circ	\circ
e.	Slow speed of the Internet connection	\circ	\circ	\circ
f.	Lack of availability of appropriate computer software	\circ	\circ	\circ
g.	Lack of availability of technology support	\circ	\circ	\circ

63. Please rate the effect of each of the following on your science instruction in this class. [Select one on each row.]

	Inhibits effective instruction	Neutral or Mixed			Promotes effective instruction	N/A or Don't Know
a. Current state standards	(1)	(2)	(3)	(4)	(5)	○
b. District/Diocese curriculum frameworks [Not presented to non-Catholic private schools]	(1)	(2)	(3)	(4)	(5)	\bigcirc
c. District/Diocese and/or school pacing guides	(1)	(2)	(3)	(4)	(5)	\bigcirc
d. State testing/accountability policies [Not presented to non-Catholic private schools]	(1)	(2)	(3)	(4)	(5)	\bigcirc
e. District/Diocese testing/accountability policies [Not presented to non-Catholic private schools]	(1)	(2)	(3)	(4)	(5)	\bigcirc
f. Textbook/module selection policies	(1)	(2)	(3)	(4)	(5)	\bigcirc
g. Teacher evaluation policies	(1)	(2)	(3)	(4)	(5)	\bigcirc
h. College entrance requirements [Presented to grades 9-12 teachers only]	(1)	(2)	(3)	(4)	(5)	\bigcirc
i. Students' motivation, interest, and effort in science	(1)	(2)	(3)	(4)	(5)	\bigcirc
j. Students' reading abilities	(1)	(2)	(3)	(4)	(5)	\bigcirc
k. Community views on science instruction	(1)	(2)	(3)	(4)	(5)	\bigcirc
l. Parent expectations and involvement	(1)	(2)	(3)	(4)	(5)	\bigcirc
m. Principal support	(1)	(2)	(3)	(4)	(5)	\bigcirc
n. Time for you to plan, individually and with colleagues	(1)	(2)	(3)	(4)	(5)	\bigcirc
o. Time available for your professional development	(1)	(2)	(3)	(4)	(5)	\bigcirc

Section C. Your Most Recently Completed Science Unit in this Class

The questions in this section are about the most recently completed science unit in this class.

- Depending on the structure of your class and the instructional materials you use, a unit may range from a few to many class periods.
- Do not be concerned if this unit was not typical of your instruction.

64. How many class periods were devoted to instruction on the most recently completed science unit? [Enter your response as a whole number (for example: 15).] \qquad
65. Which of the following best describes the content of this unit?

\circ	Earth/Space Science
\circ	Life Science/Biology
\circ	Environmental Science/Ecology
\circ	Chemistry
\circ	Physics
\circ	Engineering

66. What science ideas and/or skills were addressed in this unit? \qquad
67. [Presented only to teachers who indicated using commercially-published textbooks/modules in Q53] Was this unit based primarily on the commercially-published textbook/modules you described earlier as the one used most often in this class?

\circ	Yes [Skip to Q70]
\circ	No

68. Was this unit based on a commercially-published textbook/module?

\circ	Yes
\circ	No [Skip to Q74]

69. Please indicate the title, author, most recent copyright year, and ISBN code of that textbook/module.

- The 10 - or 13 -character ISBN code can be found on the copyright page and/or the back cover of the textbook/module.
- Do not include the dashes when entering the ISBN.
- An example of the location of the ISBN is shown to the right.

Title:
First Author:
Year:

ISBN:
70. Please indicate the extent to which you did each of the following while teaching this unit. [Select one on each row.]

	Not at all	Somewhat			To a great extent
a. You used the textbook/module to guide the overall structure and content emphasis of the unit.	(1)	(2)	(3)	(4)	(5)
b. You followed the textbook/module to guide the detailed structure and content emphasis of the unit.	(1)	(2)	(3)	(4)	(5)
c. You picked what is important from the textbook/module and skipped the rest.	(1)	(2)	(3)	(4)	(5)
d. You incorporated activities (for example: problems, investigations, readings) from other sources to supplement what the textbook/module was lacking.	(1)	(2)	(3)	(4)	(5)

71. [Presented only to teachers who answered "2-5" in Q70c]

During this unit, when you skipped activities (for example: problems, investigations, readings) in your textbook/module, how much was each of the following a factor in your decisions? [Select one on each row.]

	Not a factor	A minor factor	A major factor
a. The science ideas addressed in the activities you skipped are not included in your pacing guide and/or current state standards.	(1)	(2)	(3)
b. You did not have the materials needed to implement the activities you skipped.	(1)	(2)	(3)
c. The activities you skipped were too difficult for your students.	(1)	(2)	(3)
d. Your students already knew the science ideas or were able to learn them without the activities you skipped.	(1)	(2)	(3)
e. You have different activities for those science ideas that work better than the ones you skipped.	(1)	(2)	(3)

72. [Presented only to teachers who answered "2-5" in Q70d]

During this unit, when you supplemented the textbook/module with additional activities, how much was each of the following a factor in your decisions? [Select one on each row.]

		Not a factor	A minor factor	A major factor
a.	Your pacing guide indicated that you should use supplemental activities.	(1)	(2)	(3)
b.Supplemental activities were needed to prepare students for standardized tests.	(1)	(2)	(3)	
c.Supplemental activities were needed to provide students with additional practice.	(1)	(2)	(3)	
d.Supplemental activities were needed so students at different levels of achievement could increase their understanding of the ideas targeted in each activity.	(1)	(2)	(3)	

73. How well prepared did you feel to do each of the following as part of your instruction on this particular unit? [Select one on each row.]

	Not adequately prepared	Somewhat prepared	Fairly well prepared	Very well prepared
a. Anticipate difficulties that students may have with particular science ideas and procedures in this unit	(1)	(2)	(3)	(4)
b. Find out what students thought or already knew about the key science ideas	(1)	(2)	(3)	(4)
c. Implement the science textbook/module to be used during this unit [Presented only to teachers who indicated using commercially-published textbooks/modules in Q67/68]	(1)	(2)	(3)	(4)
d. Monitor student understanding during this unit	(1)	(2)	(3)	(4)
e. Assess student understanding at the conclusion of this unit	(1)	(2)	(3)	(4)

74. Which of the following did you do during this unit? [Select all that apply.]

\square	Administered an assessment, task, or probe at the beginning of the unit to find out what students thought or already knew about the key science ideas
\square	Questioned individual students during class activities to see if they were "getting it"
\square	Used information from informal assessments of the entire class (for example: asking for a show of hands, thumbs up/thumbs down, clickers, exit tickets) to see if students were "getting it"
\square	Reviewed student work (for example: homework, notebooks, journals, portfolios, projects) to see if they were "getting it"
\square	Administered one or more quizzes and/or tests to see if students were "getting it"
\square	Had students use rubrics to examine their own or their classmates' work
\square	Assigned grades to student work (for example: homework, notebooks, journals, portfolios, projects)
\square	Administered one or more quizzes and/or tests to assign grades
\square	Went over the correct answers to assignments, quizzes, and/or tests with the class as a whole

Section D. Your Most Recent Science Lesson in this Class

The next three questions refer to the most recent science lesson in this class, whether or not that instruction was part of the unit you've just been describing. Do not be concerned if this lesson included activities and/or interruptions that are not typical (for example: a test, students working on projects, a fire drill).
75. How many minutes was that lesson? [Enter your response as a non-zero whole number (for example: 50).] \qquad
76. Of these minutes, how many were spent on the following: [Enter each response as a whole number (for example: 15).]
a. Non-instructional activities (for example: attendance taking, interruptions) \qquad
b. Whole class activities (for example: lectures, explanations, discussions) \qquad
c. Small group work \qquad
d. Students working individually (for example: reading textbooks, completing worksheets, taking a test or quiz) \qquad
77. Which of the following activities took place during that science lesson? [Select all that apply.]

\square	Teacher explaining a science idea to the whole class
\square	Whole class discussion
\square	Students completing textbook/worksheet problems
\square	Teacher conducting a demonstration while students watched
\square	Students doing hands-on/laboratory activities
\square	Students reading about science
\square	Students using instructional technology
\square	Practicing for standardized tests
\square	Test or quiz
\square	None of the above

Section E. Demographic Information

78. Indicate your sex:

\circ	Male
\bigcirc	Female

79. Are you of Hispanic or Latino origin?

\circ	Yes
\circ	No

80. What is your race? [Select all that apply.]

\square	American Indian or Alaska Native
\square	Asian
\square	Black or African American
\square	Native Hawaiian or Other Pacific Islander
\square	White

81. In what year were you born? [Enter your response as a whole number (for example: 1969). Do not use commas.] \qquad

Thank you!

Science Teacher Questionnaire Tables

Table STQ 1
Number of Years Science Teachers
Spent Teaching Prior to This School Year

	Mean Number of Years						
	Elementary			Middle		High	
	12.8	(0.4)	13.5	(0.6)	12.4	(0.3)	
Science at the K-12 level	11.5	(0.4)	11.2	(0.5)	12.3	(0.3)	
At this school, any subject	8.4	(0.4)	8.4	(0.4)	8.6	(0.2)	

Table STQ 2
Grade Levels Taught by Science Teachers

	Percent of Teachers
Grades K-5	75
Grades 6-8	14
(0.7)	
Grades 9-12	$14(0.6)$

Table STQ 3
Instructional Arrangements
for Science in Self-Contained Elementary School Classes

	Percent of Teachers
This class receives science instruction only from you This class receives science instruction from you and another teacher (e.g., a science specialist or a teacher you team with)	82 (1.7)

Table STQ 4
Frequency with Which Self-Contained
Elementary School Teachers Provide Science Instruction

	Percent of Teachers
I teach science all or most days, every week of the year	$22(1.8)$
I teach science every week, but typically three or fewer days each week	$40 \quad(1.8)$
I teach science some weeks, but typically not every week	$38 \quad(2.0)$

Table STQ 5 and 6
Average Number of Minutes per Day Spent Teaching Each Subject in Self-Contained Elementary School Classes ${ }^{\dagger}$

	Average Number of Minutes
Reading/Language Arts	87.7
(1.3)	
Mathematics	55.4
(0.8)	
Science	19.9
Social Studies	17.3

${ }^{\dagger}$ Only teachers who indicated they teach reading/language arts, mathematics, science, and social studies to one class of students are included in these analyses.

Table STQ 7.1
Number of Sections of Science and
Engineering Classes Taught per Week by Elementary School Teachers

	Percent of Teachers ${ }^{\dagger}$			
	Science		Engineering	
0 Sections	-	-	90	(3.0)
1 Section	16	(4.4)	2	(2.0)
2 Sections	40	(7.5)	2	(1.9)
3 Sections	12	(3.5)	2	(1.2)
4 Sections	15	(4.4)	2	(1.2)
5 Sections	5	(2.0)	0	(0.2)
6 Sections	5	(2.7)	0	(0.1)
7 Sections	1	(0.7)	1	(0.5)
8 Sections	1	(1.2)	0	
9 Sections	1	(0.4)	0	--- ${ }^{\text { }}$
10 Sections	5	(2.2)	1	(1.1)

${ }^{\dagger}$ Only classes taught by non-self-contained teachers are included in this analysis.
\ddagger No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 7.2
Number of Sections of Science and
Engineering Classes Taught per Week by Middle School Teachers

	Percent of Teachers			
	Science		Engineering	
0 Sections	-	-	94	(1.0)
1 Section	5	(0.9)	3	(1.0)
2 Sections	11	(1.8)	1	(0.3)
3 Sections	12	(1.6)	1	(0.2)
4 Sections	24	(2.1)	0	(0.2)
5 Sections	24	(1.9)	1	(0.3)
6 Sections	19	(1.6)	1	(0.3)
7 Sections	3	(0.5)	0	(0.1)
8 Sections	0	(0.2)	0	
9 Sections	1	(0.6)	0	
10 Sections	1	(0.4)	0	---+

${ }^{\dagger}$ No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 7.3
Number of Sections of Science and Engineering Classes Taught per Week by High School Teachers

	Percent of Teachers		
	Science		Engineering
0 Sections	-	-	95
(0.6)			
1 Section	4	(0.9)	2
(0.4)			
2 Sections	9	(1.3)	1
(0.3)			
3 Sections	17	(1.3)	0
(0.2)			
4 Sections	16	(1.3)	0
(0.1)			
S Sections	32	(1.9)	0
	(0.2)		
6 Sections			(1.3)
7 Sections	3	(0.5)	0
8 Sections	0	(0.2)	0
(0.1)			
9 Sections	0	(0.2)	0
10 Sections	0	(0.2)	0

${ }^{\dagger}$ No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

There is no table for STQ 8.

There is no table for STQ 9.

There is no table for STQ 10.

Table STQ 11
Subjects of Science Teachers' Degrees

	Percent of Teachers				
	Elementary			Midde	
High					
Education, including Science Education	80	(1.4)	76	(2.1)	65
Natural Sciences and/or Engineering	4	(0.7)	26	(2.0)	61
Other Subject	39	(2.1)	38	(2.5)	31

Table STQ 12
Science Teachers with Education Degrees

	Percent of Teachers †				
	Elementary			Midde	
High					
Elementary Education	74	(1.5)	42	(2.6)	2
Mathematics Education	2	(0.5)	5	(1.1)	4
(0.5)					
Science Education	2	(0.5)	27	(1.9)	48
(1.4)					
Other Education	19	(1.6)	24	(2.2)	21

Teachers indicating in Q11 that they do not have an education degree are treated as not having a degree in these areas.

Table STQ 13
Science Teachers with Natural Science and/or Engineering Degrees

	Percent of Teachers †					
	Elementary		Middle		High	
Biology/Life Science	1	(0.4)	15	(1.4)	37	
Chemistry	0	(0.1)	3	(0.8)	12	
(0.9)						
Earth/Space Science	0	(0.0)	4	(0.9)	4	
		(0.5)				
Engineering						
Environmental Science/Ecology	0	(0.2)	1	(0.3)	5	
Physics	0	(0.2)	3	(0.6)		
Other natural science	0	(0.2)	1	(0.6)	3	
(0.2)	6	(0.8)				

${ }^{\dagger}$ Teachers indicating in Q11 that they do not have a natural science and/or engineering degree are treated as not having a degree in these areas.

Table STQ 14
Biology/Life Science College Courses Completed by Science Teachers

	Percent of Teachers					
	Elementary		Middle		High	
General/introductory biology/life science courses (e.g., Biology I, Introduction to Biology)	90	(1.1)	96	(0.9)	91	(0.9)
Biology/life science courses beyond the general/introductory level		(1.7)		(2.6)	79	(1.2)
Biology/life science education courses	52	(1.7)	58	(2.8)	52	(1.5)

Table STQ 15
Advanced Biology/Life Science College Courses Completed by Science Teachers

	Percent of Teachers ${ }^{\dagger}$					
	Elementary		Middle		High	
Anatomy/Physiology	11	(1.1)	36	(2.1)	54	(1.5)
Biochemistry	3	(0.7)	16	(1.5)	43	(1.5)
Botany	5	(0.8)	26	(2.0)	44	(1.4)
Cell Biology	4	(0.8)	28	(2.0)	48	(1.5)
Ecology	6	(0.9)	33	(2.1)	50	(1.5)
Evolution	3	(0.7)	14	(1.5)	27	(1.2)
Genetics	3	(0.6)	24	(1.9)	54	(1.2)
Microbiology	6	(0.9)	23	(1.7)	48	(1.4)
Zoology	4	(0.7)	25	(1.8)	40	(1.4)
Other biology/life science beyond the general/introductory level	19	(1.6)	35	(2.4)	47	(1.5)

${ }^{\dagger}$ Teachers indicating in Q14 that they have not taken biology/life science courses beyond the general/introductory level are treated as not having taken any of these courses.

Table STQ 16
Chemistry College Courses Completed by Science Teachers

	Percent of Teachers					
	Elementary			Middle		High
General/introductory chemistry courses (e.g., Chemistry I,						
Introduction to Chemistry)	47	(1.8)	72	(2.3)	93	(1.1)
Chemistry courses beyond the general/introductory level	8	(1.0)	35	(2.3)	74	(1.3)
Chemistry education courses	9	(1.0)	15	(1.3)	21	(1.1)

Table STQ 17
Advanced Chemistry College Courses Completed by Science Teachers

	Percent of Teachers †				
	Elementary			Middle	
High					
Analytical Chemistry	1	(0.2)	7	(1.3)	29

${ }^{\dagger}$ Teachers indicating in Q16 that they have not taken chemistry courses beyond the general/introductory level are treated as not having taken any of these courses.

Table STQ 18
Physics College Courses Completed by Science Teachers

	Percent of Teachers			
	Elementary		Middle	
General/introductory physics courses (e.g., Physics I, Introduction				
High				
to Physics)	32	(1.7)	61	(2.3)
Physics courses beyond the general/introductory level	2	(0.6)	86	(1.1)
Physics education courses	9	(0.9)	15	(1.5)

Table STQ 19
Advanced Physics College Courses Completed by Science Teachers

	Percent of Teachers †				
	Elementary			Middle	
High					
Electricity and Magnetism	1	(0.4)	8	(1.2)	21
(1.1)					
Heat and Thermodynamics	1	(0.3)	6	(0.8)	21
(1.1)					
Mechanics	1	(0.3)	6	(1.1)	22
(1.1)					
Modern or Quantum Physics	0	(0.2)	3	(0.5)	16
(1.0)					
Nuclear Physics	0	(0.2)	1	(0.3)	9
(0.8)					
Optics	0	(0.2)	3	(0.5)	13
Other physics beyond the general/introductory level	1	(0.4)	8	(1.2)	20

${ }^{\dagger}$ Teachers indicating in Q18 that they have not taken physics courses beyond the general/introductory level are treated as not having taken any of these courses.

Table STQ 20
Earth/Space Science College Courses Completed by Science Teachers

	Percent of Teachers				
	Elementary		Middle		High
General/introductory Earth/space science courses (e.g., Earth					
Science I, Introduction to Earth Science)			(2.0)		75
(2.3)	61	(1.7)			
Earth/space science courses beyond the general/introductory level	11	(1.2)	28	(1.8)	30
(1.4)					
Earth/space science education courses	23	(1.4)	27	(1.8)	14

Table STQ 21
Advanced Earth/Space Science College Courses Completed by Science Teachers

	Percent of Teachers ${ }^{\dagger}$					
	Elementary		Middle		High	
Astronomy	4	(0.8)	16	(1.3)	17	(1.1)
Geology	7	(0.9)	22	(1.6)	23	(1.2)
Meteorology	1	(0.5)	9	(1.0)	11	(1.0)
Oceanography	2	(0.4)	10	(1.4)	10	(0.9)
Physical Geography	6	(0.9)	14	(1.2)	11	(0.9)
Other Earth/space science beyond the general/introductory level	3	(0.7)	10	(1.0)	13	(1.0)

${ }^{\dagger}$ Teachers indicating in Q20 that they have not taken Earth/space science courses beyond the general/introductory level are treated as not having taken any of these courses.

Table STQ 22
Environmental Science College Courses Completed by Science Teachers

	Percent of Teachers					
	Elementary		Middle		High	
General/introductory environmental science courses (e.g., Environmental Science I, Introduction to Environmental Science)	33	(1.8)	57	(2.5)	56	(1.1)
Environmental science courses beyond the general/introductory level					27	
Environmental science education courses	12	(1.2)	20	(1.9)	13	(0.9)

Table STQ 23
Advanced Environmental Science College Courses Completed by Science Teachers

	Percent of Teachers ${ }^{\dagger}$					
	Elementary		Middle		High	
Conservation Biology	1	(0.3)	8	(1.1)	10	(1.0)
Ecology	2	(0.5)	17	(1.6)	21	(1.3)
Forestry	0	(0.2)	3	(0.6)	5	(0.6)
Hydrology	0	(0.2)	4	(0.8)	5	(0.6)
Oceanography	1	(0.4)	6	(0.8)		(0.9)
Toxicology	0	(0.1)	2	(0.4)	3	(0.5)
Other environmental science beyond the general/introductory level	2	(0.5)	10	(1.1)	13	(0.9)

Teachers indicating in Q22 that they have not taken environmental science courses beyond the general/introductory level are treated as not having taken any of these courses.

Table STQ 24
Science Teachers Having Completed
One or More Engineering College Courses

	Percent of Teachers
Elementary	1
(0.4)	
Middle	7
(1.1)	
High	$14 \quad(1.0)$

Table 25
Engineering College Courses Completed by Science Teachers

	Percent of Teachers ${ }^{\dagger}$				
	Elementary	Middle		High	
Aerospace Engineering	0 (0.1)	0	(0.2)	1	(0.3)
Bioengineering/Biomedical Engineering	0 --- ${ }^{\text {¢ }}$	1	(0.2)	1	(0.2)
Chemical Engineering	0 (0.1)	1	(0.5)	3	(0.4)
Civil Engineering	0 (0.0)	1	(0.4)	2	(0.4)
Computer Engineering	0 (0.2)	1	(0.3)	3	(0.6)
Electrical Engineering	1 (0.3)	2	(0.6)	4	(0.6)
Industrial/Manufacturing Engineering	0 (0.2)	1	(0.2)	1	(0.3)
Mechanical Engineering	0 (0.1)		(0.4)	5	(0.6)
Other types of engineering courses	0 --- \ddagger	3	(0.6)	4	(0.4)

Teachers indicating in Q24 that they have not taken any engineering courses are treated as not having taken any of these courses.

* No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 26
College Courses ${ }^{\dagger}$ Completed by Science Teachers

	Percent of Teachers					
	Elementary		Middle		High	
Interdisciplinary science (a single course that addresses content across multiple science subjects, such as biology, chemistry, physics and/or Earth science)	69	(1.9)	65	(2.8)	49	(1.7)
Biology/Life science	90	(1.1)	96	(0.9)	91	(0.9)
Chemistry	47	(1.8)	72	(2.3)	93	(1.1)
Physics	32	(1.7)	61	(2.3)	86	(1.1)
Earth/Space science	65	(2.0)	75	(2.3)	61	(1.7)
Environmental science	33	(1.8)	57	(2.5)	56	(1.1)
Engineering		(0.4)	7	(1.1)	14	(1.0)
Mathematics	94	(0.9)	94	(1.0)	93	(1.2)

A number of respondents to Q26 appear to have provided contact hours/credits rather than number of courses. Thus, it is not possible to report the number of courses taken with confidence and the percentage of teachers taking at least one course in each area is presented instead.

Table STQ 27
Science College Courses ${ }^{\dagger}$ Completed by Science Teachers at Various Institutions

	Percent of Courses						
	Elementary			Midde		High	
Two-year college, community college, and/or technical school	18	(1.5)	14	(1.3)	8	(0.9)	
Four-year college and/or university	82	(1.5)	86	(1.3)	92	(0.9)	

A number of respondents to Q27 appear to have provided contact hours/credits rather than number of courses. Thus, it is not possible to report the number of courses taken at various institutions with confidence. However, assuming respondents entered the same type of data for both two-year and four-year institutions, it is possible to calculate the percentage of courses taken at each.

Table STQ 28
Science Teachers' Paths to Certification

	Percent of Teachers					
	Elementary		Middle		High	
An undergraduate program leading to a bachelor's degree and a teaching credential	61	(2.6)	47	(3.6)	34	(2.0)
A post-baccalaureate credentialing program (no master's degree awarded)	13	(1.8)	23	(2.5)	30	(1.9)
A master's program that also awarded a teaching credential	25	(2.3)	26	(3.1)	28	(1.8)
You did not have any formal teacher preparation	1	(0.5)	4	(1.5)	8	(1.3)

Table STQ 29
Science Teachers' Most Recent Participation in Science-Focused ${ }^{\dagger}$ Professional Development

	Percent of Teachers					
	Elementary		Middle		High	
In the last 3 years	59	(2.0)	82	(2.3)	85	(1.3)
4-6 years ago	16	(1.4)		(1.2)		(0.7)
7-10 years ago	5	(0.8)	3	(1.0)		(0.3)
More than 10 years ago	5	(0.8)		(1.3)		(0.4)
Never	15	(1.4)	6	(1.4)	5	(1.0)

Includes professional development focused on science or science teaching.

Table STQ 30
Science Teachers Participating in Various Professional Development Activities in the Last Three Years

	Percent of Teachers ${ }^{\dagger}$					
	Elementary		Middle		High	
Attended a workshop on science or science teaching	84	(1.8)	91	(1.7)	90	(1.2)
Attended a national, state, or regional science teacher association meeting	8	(1.2)	35	(2.8)	44	(1.7)
Participated in a professional learning community/lesson study/ teacher study group focused on science or science teaching	55	(2.4)	75	(2.5)	73	(1.6)

Only teachers indicating in Q29 that they participated in professional development in the last three years are included in this analysis.

Table STQ 31
Time Spent by Science Teachers on Science-Focused ${ }^{\dagger}$ Professional Development in the Last Three Years

	Percent of Teachers ${ }^{\ddagger}$					
	Elementary		Middle		High	
None ${ }^{\ddagger}$	41	(2.0)	18	(2.3)	15	(1.4)
Less than 6 hours	24	(1.4)	12	(2.0)		(1.2)
6-15 hours	22	(1.7)	24	(1.8)	20	(1.1)
16-35 hours	8	(0.9)	20	(2.0)	21	(1.4)
More than 35 hours	4	(0.7)	27	(2.0)	36	(1.1)

${ }^{\dagger}$ Includes professional development focused on science or science teaching.

Table STQ 32.1
Elementary School Science Teachers' Description of Science-Focused ${ }^{\dagger}$ Professional Development in the Last Three Years

	Percent of Teachers ${ }^{\ddagger}$									
	Not at All				Somewhat				To a Great Extent	
		1		2		3				5
You had opportunities to engage in science investigations	15	(2.5)	7	(1.6)	30	(3.2)	23	(2.8)	25	(2.7)
You had opportunities to examine classroom artifacts (e.g., student work samples)	20	(3.1)	15	(2.6)	34	(3.3)	17	(2.7)	15	(2.5)
You had opportunities to try out what you learned in your classroom and then talk about it as part of the professional development	24	(3.1)	16	(2.0)	26	(3.1)	16	(2.6)	18	(2.7)
You worked closely with other science teachers from your school	21	(2.8)	18	(2.4)	26	(2.8)	15	(2.6)	20	(2.6)
You worked closely with other science teachers who taught the same grade and/or subject whether or not they were from your school	25	(3.0)	14	(2.7)	24	(2.4)	17	(2.7)	20	(2.5)
The professional development was a waste of your time	58	(3.5)	21	(2.7)	14	(2.6)	5	(1.6)	3	(1.3)

${ }^{\dagger}$ Includes professional development focused on science or science teaching.
\ddagger Only elementary school teachers indicating in Q29 that they participated in professional development in the last three years are included in this analysis.

Table STQ 32.2
Middle School Science Teachers' Description of Science-Focused ${ }^{\dagger}$ Professional Development in the Last Three Years

Includes professional development focused on science or science teaching.

* Only middle school teachers indicating in Q29 that they participated in professional development in the last three years are included in this analysis.

Table STQ 32.3
High School Science Teachers' Description of Science-Focused ${ }^{\dagger}$ Professional Development in the Last Three Years

	Percent of Teachers ${ }^{\ddagger}$								
	$\begin{gathered} \text { Not } \\ \text { at All } \end{gathered}$	Somewhat				4		To a Great Extent	
	1	2		3				5	
You had opportunities to engage in science investigations	16 (2.1)	12	(1.3)	28	(2.3)	25	(2.7)	19	(1.9)
You had opportunities to examine classroom artifacts (e.g., student work samples)	15 (1.7)	18	(1.9)	34	(2.2)	20	(1.9)	13	(1.6)
You had opportunities to try out what you learned in your classroom and then talk about it as part of the professional development	11 (1.8)	15	(2.1)	27	(2.2)	28	(2.1)	19	(1.6)
You worked closely with other science teachers from your school	10 (1.8)	8	(1.5)	20	(1.8)	25	(2.1)	37	(2.6)
You worked closely with other science teachers who taught the same grade and/or subject whether or not they were from your school	9 (1.9)	11	(1.7)	22	(2.1)	32	(2.5)	26	(1.9)
The professional development was a waste of your time	$52 \quad(2.3)$		(2.1)	17	(1.8)	4	(0.8)	3	(0.8)

Includes professional development focused on science or science teaching.
\ddagger Only high school teachers indicating in Q29 that they participated in professional development in the last three years are included in this analysis.

Table STQ 33.1
Elementary School Science Teachers' Most Recent
Participation in a Formal Course for College Credit in Various Areas

	Percent of Teachers									
	In the last 3 years		$\begin{gathered} \text { 4-6 years } \\ \text { ago } \end{gathered}$		$\begin{gathered} 7-10 \text { years } \\ \text { ago } \\ \hline \hline \end{gathered}$		More than 10 years ago		Never	
Science	8	(0.9)	17	(1.6)	17	(1.4)	57	(2.0)	1	(0.3)
How to teach science	11	(1.1)		(1.5)		(1.4)	49	(1.9)	11	(1.1)
Student teaching in science	7	(0.8)		(1.3)	10	(1.2)	42	(1.9)	30	(1.6)
Student teaching in other subjects	11	(1.1)	15	(1.5)	13	(1.3)	53	(1.9)	8	(0.9)

Table STQ 33.2
Middle School Science Teachers' Most Recent
Participation in a Formal Course for College Credit in Various Areas

	Percent of Teachers									
	In the last 3 years		$\begin{gathered} \text { 4-6 years } \\ \text { ago } \\ \hline \end{gathered}$		$\begin{gathered} 7-10 \text { years } \\ \text { ago } \\ \hline \hline \end{gathered}$		More than 10 years ago		Never	
Science	22	(2.4)	14	(1.4)	19	(2.1)	44	(2.7)	1	(0.5)
How to teach science	21	(2.1)	14	(1.3)	16	(1.8)	38	(2.6)	11	(1.7)
Student teaching in science		(1.4)		(1.3)	12	(1.6)	42	(2.7)	27	(2.3)
Student teaching in other subjects	10	(1.7)	10	(1.4)	11	(1.5)	49	(2.7)	21	(1.8)

Table STQ 33.3
High School Science Teachers' Most Recent
Participation in a Formal Course for College Credit in Various Areas

	Percent of Teachers									
	In the last 3 years		$\begin{gathered} 4-6 \text { years } \\ \text { ago } \\ \hline \hline \end{gathered}$		$\begin{gathered} 7-10 \text { years } \\ \text { ago } \\ \hline \hline \end{gathered}$		More than 10 years ago		Never	
Science	24	(1.2)	19	(1.1)	18	(1.2)	38	(1.2)	1	(0.5)
How to teach science	25	(1.4)	16	(1.1)	14	(1.1)	29	(1.2)	16	(1.4)
Student teaching in science	10	(1.2)		(0.8)		(0.9)	41	(1.2)	28	(1.5)
Student teaching in other subjects	6	(0.8)	5	(0.8)	6	(0.7)	29	(1.3)	55	(1.5)

Table STQ 34.1
Elementary School Science Teachers' Perceptions of Topics Emphasized During Professional Development/Coursework in the Last Three Years

Only elementary school teachers indicating in Q29 that they participated in professional development or indicating in Q33 that they took a college course in "Science" or "How to teach science" in the last three years are included in this analysis.

Table STQ 34.2
Emphasized During Professional Development/Coursework in the Last Three Years

	Percent of Teachers ${ }^{\dagger}$								
	$\begin{gathered} \text { Not } \\ \text { at All } \\ \hline \end{gathered}$			Somewhat				To a Great Extent	
	1	2		3		4		5	
Deepening your own science content knowledge	6 (1.7)	14	(3.2)	29	(3.9)	32	(4.1)	19	(2.5)
Learning how to use hands-on activities/manipulatives for science instruction	7 (2.0)	18	(3.7)	32	(3.3)	29	(2.8)	14	(1.8)
Finding out what students think or already know about the key science ideas prior to instruction on those ideas	4 (0.9)	12	(2.7)	38	(3.8)	31	(3.2)	15	(2.3)
Implementing the science textbook/ module to be used in your classroom	17 (2.6)	23	(3.2)	30	(3.4)	17	(2.1)	14	(2.4)
Planning instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	2 (0.7)	6	(1.8)	29	(3.6)	38	(3.9)	25	(3.0)
Monitoring student understanding during science instruction	5 (1.4)	14	(3.3)	27	(2.6)	33	(3.1)	21	(2.5)
Providing enrichment experiences for gifted students	15 (3.3)	26	(3.7)	29	(3.9)	20	(2.7)	10	(1.2)
Providing alternative science learning experiences for students with special needs	15 (2.5)	27	(3.9)	31	(3.8)	16	(1.9)	9	(1.7)
Teaching science to English-language learners	44 (3.9)		(2.6)	19	(3.2)	12	(2.0)	6	(1.3)
Assessing student understanding at the conclusion of instruction on a topic	3 (1.1)		(3.1)	29	(3.6)	37	(3.2)	17	(2.2)

Only middle school teachers indicating in Q29 that they participated in professional development or indicating in Q33 that they took a college course in "Science" or "How to teach science" in the last three years are included in this analysis.

Table STQ 34.3
High School Science Teachers' Perceptions of Topics
Emphasized During Professional Development/Coursework in the Last Three Years

	Percent of Teachers ${ }^{\dagger}$									
	$\begin{aligned} & \text { Not } \\ & \text { at All } \end{aligned}$		2		Somewhat		4		To a Great Extent	
		1			3				5	
Deepening your own science content knowledge		(1.5)	12	(1.4)	29	(2.0)	24	(1.7)	24	(1.8)
Learning how to use hands-on activities/manipulatives for science instruction		(2.0)	13	(1.5)	31	(2.2)	32	(2.2)	18	(1.9)
Finding out what students think or already know about the key science ideas prior to instruction on those ideas		(2.0)	15	(1.5)	33	(2.1)	29	(2.0)	15	(1.7)
Implementing the science textbook/module to be used in your classroom		(1.7)	20	(1.6)	27	(1.8)	17	(1.6)	12	(1.4)
Planning instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity		(1.1)	11	(1.8)	29	(1.5)	32	(1.9)	24	(1.9)
Monitoring student understanding during science instruction		(2.0)	11	(1.3)	26	(1.8)	33	(2.4)	22	(1.9)
Providing enrichment experiences for gifted students		(2.3)	18	(1.8)	29	(2.1)	22	(2.0)	11	(1.3)
Providing alternative science learning experiences for students with special needs		(2.2)	22	(1.7)	27	(2.0)	20	(1.9)	9	(1.2)
Teaching science to Englishlanguage learners		(2.5)	23	(1.9)		(1.7)	11	(1.5)	7	(1.0)
Assessing student understanding at the conclusion of instruction on a topic		(1.1)	7	(0.9)		(1.8)	32	(1.8)	26	(2.1)

Only high school teachers indicating in Q29 that they participated in professional development or indicating in Q33 that they took a college course in "Science" or "How to teach science" in the last three years are included in this analysis.

Table STQ 35
 Science Teachers Participating in Various Professional Activities in the Last Three Years

	Percent of Teachers					
	Elementary		Middle		High	
Received feedback about your science teaching from a mentor/coach formally assigned by the school or district/diocese	24	(2.5)	47	(3.5)	54	(2.4)
Served as a formally assigned mentor/coach for science teaching, not including supervision of student teachers	5	(1.0)	17	(2.2)	24	(2.2)
Supervised a student teacher in your classroom	38	(2.5)	24	(2.5)	23	(1.7)
Taught in-service workshops on science or science teaching	3	(0.9)	15	(2.1)	17	(1.9)
Led a professional learning community/lesson study/teacher study group focused on science or science teaching	4	(1.0)	19	(2.5)	26	(2.1)

Table STQ 36
Elementary School Science Teachers'
Perceptions of their Preparedness to Teach Various Subjects

	Percent of Teachers							
		ately ared	Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Life Science	4	(0.6)	21	(1.6)	46	(1.9)	29	(1.6)
Earth Science	4	(0.6)	25	(1.8)	45	(1.8)	26	(1.5)
Physical Science	8	(1.1)	32	(2.1)	42	(1.9)	17	(1.2)
Engineering	73	(1.7)	18	(1.6)	5	(0.8)	3	(0.6)
Mathematics	1	(0.4)	3	(0.6)	20	(1.5)	76	(1.6)
Reading/Language Arts	1	(0.4)	1	(0.4)	16	(1.2)	82	(1.3)
Social Studies	2	(0.5)	13	(1.2)	41	(1.9)	44	(1.8)

There is no elementary school table for STQ 37.1.

Table STQ 37.2
Middle School Science Teachers'
Perceptions of their Preparedness to Teach Various Subjects

	Percent of Teachers ${ }^{\dagger}$							
	Not Adequately Prepared		Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Earth/Space Science								
Earth's features and physical processes	2	(0.4)	9	(1.7)	38	(2.6)	51	(2.9)
The solar system and the universe	6	(0.9)	19	(2.6)	39	(3.0)	36	(2.6)
Climate and weather	6	(1.1)	16	(2.5)	36	(2.6)	42	(3.0)
Biology/Life Science								
Cell biology	7	(1.8)	13	(1.8)	31	(2.8)	49	(2.6)
Structures and functions of organisms	5	(1.4)	11	(2.0)	32	(2.5)	52	(3.1)
Ecology/ecosystems	3	(1.3)	16	(2.0)	33	(2.6)	48	(2.6)
Genetics	8	(1.5)	20	(2.6)	31	(2.2)	41	(2.5)
Evolution	13	(2.2)	23	(2.2)	32	(2.4)	33	(2.5)
Chemistry								
Atomic structure	10	(1.9)	17	(2.4)	29	(2.2)	45	(2.4)
Chemical bonding, equations, nomenclature, and reactions	18	(2.4)	23	(2.3)	28	(2.6)	31	(2.0)
Elements, compounds, and mixtures	6	(1.1)	16	(2.8)	26	(2.5)	53	(2.6)
The Periodic Table	5	(0.9)	16	(2.4)	30	(2.5)	49	(2.3)
Properties of solutions	7	(1.3)	23	(2.4)	36	(2.6)	33	(2.3)
States, classes, and properties of matter	3	(0.6)	8	(1.4)	32	(2.5)	58	(2.5)
Physics								
Forces and motion	3	(0.6)	20	(2.7)	34	(2.7)	42	(2.7)
Energy transfers, transformations, and conservation	6	(1.4)	21	(2.5)	36	(2.5)	37	(2.6)
Properties and behaviors of waves	9	(1.3)	32	(2.6)	37	(2.8)	23	(2.5)
Electricity and magnetism	9	(1.4)	35	(2.7)	33	(2.6)	23	(2.5)
Modern physics (e.g., special relativity)	37	(2.8)	39	(3.0)	19	(1.7)	5	(1.3)
Engineering (e.g., nature of engineering and technology, design processes, analyzing and improving technological systems, interactions between technology and society)	46	(2.5)	34	(2.5)	14	(1.6)	5	(0.8)
Environmental and resource issues (e.g., land and water use, energy resources and consumption, sources and impacts of pollution)	5	(1.4)	28	(3.4)	33	(3.0)	35	(3.0)

Table STQ 37.3
 High School Science Teachers'
 Perceptions of their Preparedness to Teach Various Subjects

	Percent of Teachers ${ }^{\dagger}$							
	Not Adequately Prepared		Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Earth's features and physical processes	12	(2.9)	18	(2.3)	24	(2.7)	47	(3.1)
The solar system and the universe	13	(2.2)	20	(2.8)	26	(2.9)	41	(3.2)
Climate and weather	13	(3.0)	18	(2.7)	29	(3.3)	39	(3.8)
Biology/Life Science								
Cell biology	5	(1.2)	7	(1.3)	20	(1.9)	68	(2.2)
Structures and functions of organisms	5	(1.3)	6	(1.9)	25	(2.4)	64	(2.5)
Ecology/ecosystems	4	(1.2)	11	(1.5)	29	(2.1)	56	(2.4)
Genetics	5	(1.2)	6	(1.2)	26	(2.2)	63	(2.5)
Evolution	6	(1.1)	11	(1.5)	31	(2.3)	52	(2.5)
Chemistry								
Atomic structure	0	(0.3)	4	(1.9)	15	(2.0)	80	(2.3)
Chemical bonding, equations, nomenclature, and reactions	0	(0.3)	7	(1.9)	16	(1.9)	77	(2.5)
Elements, compounds, and mixtures	0	(0.3)	4	(1.9)	12	(1.7)	83	(2.2)
The Periodic Table	1	(0.4)	3	(1.9)	14	(1.7)	82	(2.2)
Properties of solutions	1	(0.5)	9	(2.1)	24	(2.1)	66	(2.5)
States, classes, and properties of matter	1	(0.4)	4	(2.0)	15	(1.7)	80	(2.4)
Physics								
Forces and motion	2	(0.8)	6	(1.8)	21	(2.6)	71	(3.0)
Energy transfers, transformations, and conservation	2	(0.8)	8	(2.2)	27	(3.4)	62	(3.3)
Properties and behaviors of waves	4	(1.0)	11	(2.1)	34	(3.4)	51	(3.1)
Electricity and magnetism	8	(1.7)	14	(2.3)	35	(3.3)	43	(2.8)
Modern physics (e.g., special relativity)	23	(2.9)	27	(3.1)	31	(3.1)	19	(2.1)
Engineering (e.g., nature of engineering and technology, design processes, analyzing and improving technological systems, interactions between technology and society)	46	(1.6)	33	(1.6)	13	(1.1)	8	(0.8)
Environmental and resource issues (e.g., land and water use, energy resources and consumption, sources and impacts of pollution)	6	(1.4)	23	(3.6)	34	(3.7)	37	(3.8)

Table STQ 38.1
Elementary School Science Teachers'
Perceptions of their Preparedness for Each of a Number of Tasks

	Percent of Teachers							
	Not Adequately Prepared		Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Plan instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	7	(1.4)	25	(2.3)	40	(2.4)	28	(2.4)
Teach science to students who have learning disabilities	17	(2.0)	30	(2.3)	38	(2.6)	15	(2.0)
Teach science to students who have physical disabilities	25	(2.2)	33	(2.1)	30	(2.5)	13	(1.9)
Teach science to English-language learners	24	(2.4)	26	(2.2)	35	(2.5)	15	(1.9)
Provide enrichment experiences for gifted students	11	(1.8)	31	(2.5)	37	(2.5)	21	(2.3)
Encourage students' interest in science and/or engineering	8	(1.3)	25	(2.2)	42	(2.4)	25	(2.1)
Encourage participation of females in science and/or engineering	10	(1.5)	20	(1.9)	40	(2.3)	30	(2.3)
Encourage participation of racial or ethnic minorities in science and/or engineering		(1.7)	21	(1.9)	38	(2.5)	30	(2.2)
Encourage participation of students from low socioeconomic backgrounds in science and/or engineering	8		21	(2.0)	40	(2.2)	31	(2.2)
Manage classroom discipline	0	(0.3)	3	(1.2)	25	(2.3)	72	(2.3)

Table STQ 38.2
Middle School Science Teachers'
Perceptions of their Preparedness for Each of a Number of Tasks

	Percent of Teachers							
	Not Adequately Prepared		Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Plan instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	2	(0.4)	18	(3.0)	51	(3.5)	29	(3.0)
Teach science to students who have learning disabilities	6	(1.5)	30	(3.2)	41	(3.3)	23	(2.9)
Teach science to students who have physical disabilities	12	(2.2)	33	(3.6)	38	(3.3)	17	(2.7)
Teach science to English-language learners	23	(3.1)	39	(3.4)	25	(2.7)	13	(2.4)
Provide enrichment experiences for gifted students	8	(2.0)	28	(4.1)	41	(3.9)	23	(2.9)
Encourage students' interest in science and/or engineering	2	(0.7)	13	(3.0)	47	(4.0)	39	(3.3)
Encourage participation of females in science and/or engineering	2	(0.7)	11	(2.1)	41	(3.4)	46	(3.6)
Encourage participation of racial or ethnic minorities in science and/or engineering	3	(1.0)	21	(2.7)	40	(3.3)	36	(3.5)
Encourage participation of students from low socioeconomic backgrounds in science and/or engineering	2		13	(1.8)	49	(3.9)	36	(3.8)
Manage classroom discipline	1	(0.3)	5	(1.7)	34	(3.3)	60	(3.6)

Table STQ 38.3
 High School Science Teachers'
 Perceptions of their Preparedness for Each of a Number of Tasks

	Percent of Teachers							
	Not Adequately Prepared		Somewhat Prepared		Fairly Well Prepared		Very Well Prepared	
Plan instruction so students at different levels of achievement can increase their understanding of the ideas targeted in each activity	1	(0.2)	18	(2.1)	44	(2.1)	38	(1.9)
Teach science to students who have learning disabilities	8	(1.5)	34	(2.5)	37	(2.3)	21	(1.8)
Teach science to students who have physical disabilities	12	(1.3)	31	(2.2)	37	(2.0)	21	(1.8)
Teach science to English-language learners		(2.0)	32	(1.9)	27	(1.9)	14	(1.3)
Provide enrichment experiences for gifted students	9	(1.8)	20	(1.7)	37	(2.2)	33	(2.0)
Encourage students' interest in science and/or engineering	1	(0.4)	11	(2.0)	35	(2.1)	53	(2.2)
Encourage participation of females in science and/or engineering	3	(0.6)	10	(1.9)	32	(1.9)	55	(2.2)
Encourage participation of racial or ethnic minorities in science and/or engineering	3	(0.6)	15	(2.1)	38	(2.0)	44	(2.0)
Encourage participation of students from low socioeconomic backgrounds in science and/or engineering			15	(2.0)	38	(2.0)	44	(2.1)
Manage classroom discipline	2	(0.9)	5	(0.9)	34	(2.1)	59	(2.3)

Table STQ 39.1
Elementary School Science Teachers' Opinions about Teaching and Learning

Table STQ 39.2

Middle School Science Teachers’ Opinions about Teaching and Learning

	Percent of Teachers						
	Strongly Disagree	Disagree	No Opinion	Agree		Strongly Agree	
Students learn science best in classes with students of similar abilities	2 (1.0)	$34 \quad$ (2.4)	15 (2.0)	39	(2.4)	9	(1.4)
Inadequacies in students' science background can be overcome by effective teaching	$0 \quad(0.2)$	5 (1.1)	6 (1.3)	72	(2.3)	16	(1.5)
It is better for science instruction to focus on ideas in depth, even if that means covering fewer topics	$0 \quad$ (0.3)	11 (1.6)	12 (1.4)	50	(2.5)	27	(2.0)
Students should be provided with the purpose for a lesson as it begins	0 (0.1)	4 (0.7)	7 (1.3)	47	(2.6)	43	(2.6)
At the beginning of instruction on a science idea, students should be provided with definitions for new scientific vocabulary that will be used	1 (0.2)	11 (1.6)	10 (1.5)	50	(2.4)	28	(2.2)
Teachers should explain an idea to students before having them consider evidence that relates to the idea	3 (0.7)	$34 \quad$ (2.4)	22 (2.4)	30	(2.2)	11	(1.4)
Most class periods should include some review of previously covered ideas and skills	0 (0.2)	4 (1.1)	7 (1.3)	60	(2.3)	29	(2.2)
Most class periods should provide opportunities for students to share their thinking and reasoning	0 (0.1)	1 (0.7)	4 (0.9)	46	(2.3)	48	(2.5)
Hands-on/laboratory activities should be used primarily to reinforce a science idea that the students have already learned	4 (1.1)	26 (2.2)	14 (2.1)	33	(2.7)	24	(2.1)
Students should be assigned homework most days	7 (1.2)	$36 \quad$ (2.1)	$24 \quad$ (2.1)	29	(2.3)	4	(0.8)
Most class periods should conclude with a summary of the key ideas addressed	$0 \quad(0.1)$	1 (0.7)	$6 \quad(0.9)$	54	(2.4)	38	(2.5)

Table STQ 39.3
High School Science Teachers' Opinions about Teaching and Learning

	Percent of Teachers								
	Strongly Disagree	Disagree		No Opinion		Agree		Strongly Agree	
Students learn science best in classes with students of similar abilities	1 (0.3)	23	(1.3)	11	(1.1)	46	(1.8)	20	(1.1)
Inadequacies in students' science background can be overcome by effective teaching	$0 \quad(0.1)$	8	(0.8)	8		66	(1.2)	18	(1.1)
It is better for science instruction to focus on ideas in depth, even if that means covering fewer topics	1 (0.3)	14	(0.8)	13	(0.9)	47	(1.5)	26	(1.5)
Students should be provided with the purpose for a lesson as it begins	1 (0.2)	3	(0.4)	8	(1.0)	50	(1.5)	38	(1.5)
At the beginning of instruction on a science idea, students should be provided with definitions for new scientific vocabulary that will be used	1 (0.2)	15	(1.2)	14	(0.9)	45	(1.8)	25	(1.2)
Teachers should explain an idea to students before having them consider evidence that relates to the idea	4 (0.6)	36	(1.3)	22	(1.3)	31	(1.6)	8	(0.9)
Most class periods should include some review of previously covered ideas and skills	0 (0.1)	5	(0.8)	8	(0.9)	60	(1.6)	26	(1.4)
Most class periods should provide opportunities for students to share their thinking and reasoning	0 (0.1)		(0.3)	7	(0.8)	53	(1.7)	39	(1.6)
Hands-on/laboratory activities should be used primarily to reinforce a science idea that the students have already learned	5 (0.7)		(1.4)	12	(1.2)	34	(1.6)	21	(1.3)
Students should be assigned homework most days	3 (0.5)	27	(1.2)	22	(1.2)	37	(1.4)	10	(1.0)
Most class periods should conclude with a summary of the key ideas addressed	$0 \quad(0.2)$	2	(0.4)	10	(1.0)	59	(1.4)	29	(1.4)

Table STQ 40
Average Minutes per Week Science Classes Meet

	Average Number of Minutes †
Elementary	$202.7 \quad(21.1)$
Middle	$265.5 \quad(16.9)$
High	$285.8 \quad(5.6)$

Only non-self-contained classes are included in this analysis.

Table STQ 41
Average Number of Students in Science Classes ${ }^{\dagger}$

	Average Number of Students
Elementary	$21.9 \quad(0.2)$
Middle	$23.6 \quad(0.4)$
High	$21.7 \quad(0.3)$

Table STQ 42
Race/Ethnicity of Students in Science Classes

	Percent of Students				
	Elementary		Middle	High	
American Indian or Alaskan Native	1	(0.2)	1	(0.4)	1
(0.3)					
Asian	3	(0.3)	4	(0.7)	6
(0.5)					
Black or African American	14	(1.1)	16	(1.1)	13
		(0.8)			
Hispanic/Latino	20	(1.7)	16	(1.1)	14
(0.9)					
Native Hawaiian or Other Pacific Islander	1	(0.3)	1	(0.2)	1
(0.1)					
White	57	(1.8)	60	(1.7)	63
			(1.2)		
Two or more races	5	(0.7)	3	(0.4)	3
(0.3)					

Table STQ 43
Prior Science Achievement Level of Students in Science Classes

	Percent of Classes				
	Elementary		Middle		High
	10	(1.3)	14	(2.0)	13
	37	(1.8)	33	(2.0)	30
	9	(1.1)	13	(1.6)	28
A mixture of levels	45	(2.0)	39	(2.3)	29

Table STQ 44.1
Elementary School Science Classes Where Teachers Report Having Control Over Various Curriculum and Instruction Decisions

	Percent of Classes									
	No Control					erate trol				trol
	1		2		3		4		5	
Determining course goals and objectives	39	(2.8)	15	(1.7)	22	(2.3)	10	(1.5)	14	(2.0)
Selecting textbooks/modules	44	(3.2)	22	(2.2)	21	(2.3)	8	(1.3)	5	(1.1)
Selecting content, topics, and skills to be taught	39	(2.7)	20	(2.6)	19	(2.0)	12	(1.6)	10	(1.8)
Selecting teaching techniques	1	(0.4)	2	(0.6)	16	(1.9)	29	(2.5)	53	(2.5)
Determining the amount of homework to be assigned	2	(1.1)	1	(0.5)	11	(2.0)	22	(1.7)	64	(2.7)
Choosing criteria for grading student performance	5	(1.3)	7	(1.6)	23	(2.7)	22	(1.9)	43	(3.3)

Table STQ 44.2
Middle School Science Classes Where Teachers Report Having Control Over Various Curriculum and Instruction Decisions

Table STQ 44.3
High School Science Classes Where Teachers Report Having Control Over Various Curriculum and Instruction Decisions

	Percent of Classes									
	No Control		Moderate Control						Strong Control	
	1		2		3		4		5	
Determining course goals and objectives	15	(1.2)	12	(1.2)	22	(1.6)	16	(1.6)	36	(2.3)
Selecting textbooks/modules	25	(2.0)	12	(1.1)	18	(1.6)	13	(1.5)	33	(2.6)
Selecting content, topics, and skills to be taught	13	(1.3)	12	(1.3)	24	(1.8)	16	(1.6)	35	(2.7)
Selecting teaching techniques	0	(0.2)	1	(0.4)	7	(1.1)	19	(1.6)	73	(2.0)
Determining the amount of homework to be assigned		(0.3)	0	(0.3)	7	(1.1)	16	(1.4)	76	(1.9)
Choosing criteria for grading student performance		(0.4)	2	(0.7)	12	(1.4)	24	(1.5)	61	(2.3)

Table STQ 45.1
Emphasis Given in Elementary School Science Classes to Various Instructional Objectives

	Percent of Classes							
	None		Minimal Emphasis		Moderate Emphasis		Heavy Emphasis	
Memorizing science vocabulary and/or facts	5	(0.8)	42	(2.1)	43	(2.3)	10	(1.3)
Understanding science concepts		(0.3)	5	(0.7)	36	(2.1)	59	(2.2)
Learning science process skills (e.g., observing, measuring)	1	(0.3)	10	(1.1)	43	(2.0)	47	(2.1)
Learning about real-life applications of science	1	(0.3)	9	(0.9)	44	(2.2)	46	(2.3)
Increasing students' interest in science	1	(0.3)	4	(0.7)	39	(1.8)	56	(2.0)
Preparing for further study in science		(0.4)	16	(1.4)	48	(2.1)	35	(2.0)
Learning test taking skills/strategies		(1.3)	29	(1.7)	40	(2.0)	22	(1.6)

Table STQ 45.2
Emphasis Given in Middle School
Science Classes to Various Instructional Objectives

	Percent of Classes							
	None		Minimal Emphasis		Moderate Emphasis		Heavy Emphasis	
Memorizing science vocabulary and/or facts	1	(0.5)	30	(1.7)	58	(2.1)	10	(1.2)
Understanding science concepts	0	(0.1)	0	(0.2)	19	(2.1)	80	(2.1)
Learning science process skills (e.g., observing, measuring)	0	(0.2)	6	(0.9)	40	(2.3)	54	(2.3)
Learning about real-life applications of science		(0.2)	6	(0.8)	48	(2.1)	45	(2.3)
Increasing students' interest in science		(0.2)	6	(1.5)	36	(2.1)	57	(2.2)
Preparing for further study in science		(0.1)		(1.0)	49	(2.1)	40	(2.1)
Learning test taking skills/strategies		(0.4)	24	(1.9)	51	(2.1)	24	(1.7)

Table STQ 45.3 Emphasis Given in High School Science Classes to Various Instructional Objectives

	Percent of Classes							
	None		Minimal Emphasis		Moderate Emphasis		Heavy Emphasis	
Memorizing science vocabulary and/or facts	1	(0.3)	32	(1.5)	54	(1.7)	13	(1.3)
Understanding science concepts	0	--- ${ }^{+}$	1	(0.3)	19	(1.2)	80	(1.2)
Learning science process skills (e.g., observing, measuring)	0	(0.1)	9	(0.9)	42	(1.6)	49	(1.6)
Learning about real-life applications of science	0	(0.1)	8	(0.7)	47	(1.5)	45	(1.5)
Increasing students' interest in science	0	(0.1)	7	(0.8)	43	(1.4)	50	(1.4)
Preparing for further study in science	1	(0.5)	10	(0.9)	44	(1.3)	46	(1.3)
Learning test taking skills/strategies	2	(0.4)	26	(1.4)	50	(1.5)	22	(1.2)

No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 46.1

Elementary School Science Classes in which

Teachers Report Various Activities in their Classrooms

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Explain science ideas to the whole class	0	--- \dagger	2	(0.5)	10	(1.0)	38	(1.8)	50	(1.8)
Engage the whole class in discussions	0	--- ${ }^{\dagger}$	2	(0.4)	8	(0.8)	33	(1.6)	57	(1.6)
Have students work in small groups	0	(0.2)	5	(0.8)	22	(1.6)	45	(2.0)	28	(1.9)
Do hands-on/laboratory activities	2	(0.5)	12	(1.3)	32	(1.6)	39	(1.8)	16	(1.5)
Engage the class in project-based learning (PBL) activities	8	(1.4)	27	(1.8)	34	(1.9)	21	(1.9)	9	(1.3)
Have students read from a science textbook, module, or other science-related material in class, either aloud or to themselves	9	(1.2)	16	(1.8)	28	(2.1)	33	(2.1)	15	(1.3)
Have students represent and/or analyze data using tables, charts, or graphs	2	(0.5)	14	(1.5)	40	(1.8)	36	(2.0)	8	(0.9)
Require students to supply evidence in support of their claims	5	(0.7)	13	(1.1)	28	(1.9)	39	(2.0)	15	(1.4)
Have students make formal presentations to the rest of the class (e.g., on individual or group projects)	16	(1.5)	44	(2.1)	28	(1.7)	9	(1.0)	4	(0.7)
Have students write their reflections (e.g., in their journals) in class or for homework	10	(1.0)		(1.4)		(1.7)	31	(2.1)	13	(1.2)
Give tests and/or quizzes that are predominantly short-answer (e.g., multiple choice, true/false, fill in the blank)	15	(1.3)		(1.7)	34	(2.1)	25	(2.0)	6	(0.9)
Give tests and/or quizzes that include constructed-response/open-ended items	19	(1.5)	24	(1.7)	36	(2.2)	16	(1.5)	6	(0.7)
Focus on literacy skills (e.g., informational reading or writing strategies)	6	(0.9)	15	(1.3)	31	(1.7)	31	(1.8)	17	(1.5)
Have students practice for standardized tests	32	(2.1)		(1.9)	23	(2.0)	15	(1.5)	4	(0.8)
Have students attend presentations by guest speakers focused on science and/or engineering in the workplace	51	(1.8)	39	(1.8)	8	(0.9)	2	(0.4)	1	(0.4)

No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 46.2
Middle School Science Classes in which Teachers Report Various Activities in their Classrooms

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Explain science ideas to the whole class	0	--- ${ }^{\dagger}$	0	(0.2)	3	(0.9)	42	(2.3)	54	(2.2)
Engage the whole class in discussions	0	(0.1)		(0.3)	7	(1.0)	44	(2.3)	48	(2.5)
Have students work in small groups	0	(0.1)	1	(0.4)	20	(1.9)	54	(2.2)	25	(2.0)
Do hands-on/laboratory activities	2	(0.9)	3	(0.5)	33	(2.3)	52	(2.7)	10	(1.4)
Engage the class in project-based learning (PBL) activities	4	(0.7)		(2.0)	45	(2.5)	17	(1.6)	6	(1.2)
Have students read from a science textbook, module, or other science-related material in class, either aloud or to themselves	4	(1.1)		(1.3)	29	(2.1)	44	(2.1)	12	(2.0)
Have students represent and/or analyze data using tables, charts, or graphs	0	(0.1)		(1.4)	37	(1.8)	47	(2.0)	8	(1.3)
Require students to supply evidence in support of their claims	1	(0.7)	7	(1.3)	28	(2.4)	46	(2.3)	17	(1.8)
Have students make formal presentations to the rest of the class (e.g., on individual or group projects)	6	(1.1)		(2.0)	44	(2.3)	9	(1.4)	1	(0.3)
Have students write their reflections (e.g., in their journals) in class or for homework	9	(1.1)		(1.7)	27	(1.7)	31	(2.1)	13	(1.5)
Give tests and/or quizzes that are predominantly short-answer (e.g., multiple choice, true/false, fill in the blank)	2	(0.5)		(1.0)	47	(2.3)	35	(2.3)	9	(1.4)
Give tests and/or quizzes that include constructed-response/open-ended items	3	(0.5)		(1.4)	48	(2.2)	28	(1.6)	8	(1.5)
Focus on literacy skills (e.g., informational reading or writing strategies)	3	(0.7)		(1.6)	32	(2.0)	34	(2.0)	10	(1.5)
Have students practice for standardized tests	13	(1.5)		(2.5)	30	(2.2)	18	(1.8)	5	(1.2)
Have students attend presentations by guest speakers focused on science and/or engineering in the workplace	45	(2.3)		(2.4)	9	(2.2)	2	(0.7)	1	(0.4)

No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 46.3
High School Science Classes in which
Teachers Report Various Activities in their Classrooms

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Explain science ideas to the whole class	0	(0.1)	0	(0.1)	5	(0.7)	39	(1.5)	56	(1.6)
Engage the whole class in discussions	1	(0.5)	3	(0.5)	14	(1.0)	45	(1.6)	38	(1.5)
Have students work in small groups	0	(0.3)	2	(0.5)	14	(1.2)	61	(1.5)	22	(1.4)
Do hands-on/laboratory activities	1	(0.3)	4	(0.8)	25	(1.3)	62	(1.7)	8	(0.7)
Engage the class in project-based learning (PBL) activities	9	(1.0)	33	(1.6)	40	(1.6)	15	(1.0)	3	(0.5)
Have students read from a science textbook, module, or other science-related material in class, either aloud or to themselves	10	(0.9)	24	(1.3)	28	(1.5)	30	(1.6)	7	(0.8)
Have students represent and/or analyze data using tables, charts, or graphs	0	(0.2)	8	(1.0)	34	(1.4)	50	(1.6)	8	(0.7)
Require students to supply evidence in support of their claims	1	(0.3)	8	(0.8)		(1.3)	43	(1.7)	18	(1.0)
Have students make formal presentations to the rest of the class (e.g., on individual or group projects)	11	(0.9)		(1.6)	34	(1.5)	7	(0.9)	2	(0.5)
Have students write their reflections (e.g., in their journals) in class or for homework	25	(1.5)	28	(1.4)	25	(1.1)	14	(1.1)	7	(0.7)
Give tests and/or quizzes that are predominantly short-answer (e.g., multiple choice, true/false, fill in the blank)	3	(0.4)	11	(0.9)	43	(1.4)	35	(1.5)	9	(0.8)
Give tests and/or quizzes that include constructed-response/open-ended items	3	(0.4)		(0.9)		(1.5)	32	(1.3)	8	(0.8)
Focus on literacy skills (e.g., informational reading or writing strategies)		(0.9)		(1.4)		(1.6)	21	(1.4)	4	(0.6)
Have students practice for standardized tests	19	(1.3)		(1.5)		(1.2)	15	(1.1)	5	(0.5)
Have students attend presentations by guest speakers focused on science and/or engineering in the workplace	51	(1.6)		(1.5)	6	(0.8)	2	(0.4)	1	(0.2)

Table STQ 47.1
Availability of Instructional Technology in Elementary School Science Classrooms

	Percent of Classes					
	Do not have one per group available		At least one per group available upon request or in another room		At least one per group located in your classroom	
Personal computers, including laptops	31	(2.4)	36	(3.4)	33	(3.0)
Hand-held computers (e.g., PDAs, tablets, smartphones, iPads)	80	(2.3)	13	(2.0)	6	
Internet access	16	(1.9)	34	(3.2)	51	(3.0)
Graphing calculators		(2.3)		(2.2)	2	(0.7)
Other calculators	31	(2.9)	21	(2.8)	48	(2.7)
Probes for collecting data (e.g., motion sensors, temperature probes)	68	(3.1)		(2.6)	8	(1.9)
Microscopes		(3.2)		(2.9)	15	(3.0)
Classroom response system or "Clickers" (handheld devices used to respond electronically to questions in class)	59	(3.8)	24	(3.0)	17	(3.2)

Table STQ 47.2
Availability of Instructional Technology in Middle School Science Classrooms

	Percent of Classes					
	Do not have one per group available		At least one per group available upon request or in another room		At least one per group located in your classroom	
Personal computers, including laptops	25	(2.9)	52	(3.2)	23	(2.6)
Hand-held computers (e.g., PDAs, tablets, smartphones, iPads)	81		12		7	(1.4)
Internet access	15	(2.4)	42	(3.2)	43	(3.3)
Graphing calculators	70	(2.9)	20	(2.5)	10	(2.2)
Other calculators	17	(2.3)	29	(3.1)	55	(3.0)
Probes for collecting data (e.g., motion sensors, temperature probes)	57	(2.9)	30	(2.8)	13	(1.9)
Microscopes		(1.9)	47	(3.1)	35	(3.0)
Classroom response system or "Clickers" (handheld devices used to respond electronically to questions in class)	54	(2.7)	26	(2.3)		(2.3)

Table STQ 47.3
Availability of Instructional Technology in High School Science Classrooms

	Percent of Classes					
	Do not have one per group available		At least one per group available upon request or in another room		At least one per group located in your classroom	
Personal computers, including laptops	21	(1.6)	48	(2.1)	31	(2.3)
Hand-held computers (e.g., PDAs, tablets, smartphones, iPads)	80		13	(1.1)	7	(1.2)
Internet access		(1.3)	41	(2.2)	46	(2.3)
Graphing calculators	56	(2.3)	21	(1.7)	22	(1.9)
Other calculators	23	(2.1)	23	(1.8)	54	(2.1)
Probes for collecting data (e.g., motion sensors, temperature probes)	36		35	(1.9)	28	(2.1)
Microscopes	19		41	(2.4)	40	(2.2)
Classroom response system or "Clickers" (handheld devices used to respond electronically to questions in class)	53	(2.3)	28	(1.6)	19	(1.9)

Table STQ 48
Expectations that Students Will Provide their Own Instructional Technologies in Science Classes

	Percent of Classes				
	Elementary		Middle	High	
Laptop computers	2	(0.8)	2	(0.9)	8
Hand-held computers	1	(0.7)	3	(1.3)	7
Graphing calculators	1	(0.6)	$7.0)$		
Other calculators	4	(1.0)	24	(1.6)	25
(2.5)	46	(2.7)			

Table STQ 49.1
Frequency of Instructional Technology Use in Elementary School Science Classes

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Personal computers, including laptops	35	(2.5)	24	(2.9)	19	(2.3)	19	(2.9)	2	(0.7)
Hand-held computers	81	(2.6)	10	(1.8)	7	(2.0)	2	(0.8)	0	(0.2)
Internet	12	(1.7)	24	(2.7)	32	(2.8)	25	(2.8)	6	(1.7)
Calculators +	52	(3.0)	23	(2.6)	17	(2.5)	7	(1.7)	1	(0.4)
Graphing calculators ${ }^{\dagger}$	-				-		-		-	
Probes for collecting data	62	(3.2)		(2.0)		(1.9)	7	(2.2)		(0.2)
Classroom response system or "Clickers"	72	(3.3)	13	(1.9)	6	(1.2)	6	(2.4)	2	(1.4)

Item presented only to middle and high school teachers.

Table STQ 49.2
Frequency of Instructional Technology Use in Middle School Science Classes

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Personal computers, including laptops	18	(2.8)	23	(2.5)	37	(2.8)	20	(2.2)	3	(0.6)
Hand-held computers	77	(2.3)	11	(1.6)	7	(1.5)	3	(1.1)	1	(0.5)
Internet	7	(2.0)	21	(2.6)	39	(3.1)	26	(2.6)	6	(1.3)
Calculators ${ }^{\dagger}$	-	-	-		-		-		-	
Graphing calculators	79	(2.8)		(1.6)	8	(2.0)	1	(0.5)	0	(0.1)
Probes for collecting data	55	(2.8)	30	(3.3)	13	(2.0)	2	(0.6)	0	(0.2)
Classroom response system or "Clickers"	66	(2.3)	17	(1.9)	11	(1.7)	5	(1.0)	1	(0.3)

Item presented only to elementary school teachers.

Table STQ 49.3
Frequency of Instructional Technology Use in High School Science Classes

	Percent of Classes									
	Never		Rarely (e.g., a few times a year)		Sometimes (e.g., once or twice a month)		Often (e.g., once or twice a week)		All or almost all science lessons	
Personal computers, including laptops	15	(1.5)	19	(1.5)	36	(2.2)	23	(2.0)	8	(1.1)
Hand-held computers	69	(1.7)	14	(1.2)	8	(1.0)	7	(1.1)	2	(0.6)
Internet	6	(1.1)	19	(1.6)	40	(2.4)	26	(1.9)	9	(1.2)
Calculators ${ }^{\dagger}$	-	-	-		-		-		-	-
Graphing calculators	55	(2.6)		(1.6)		(1.3)	9	(1.0)		(1.3)
Probes for collecting data	40	(2.8)		(1.7)	27	(2.1)	8	(1.1)	1	(0.2)
Classroom response system or "Clickers"	68	(2.2)	17	(1.6)	10	(1.5)	4	(0.8)	1	(0.5)

Item presented only to elementary school teachers.

Table STQ 50.1
Availability of Resources in Elementary School Science Classes

	Percent of Classes							
	Not available						Available in another room	Located in your classroom
Lab tables	72	(3.0)	20	(2.7)	9			
(1.5)								
Electric outlets	10	(1.6)	5	(1.6)	85			
Faucets and sinks	17	(2.3)	19	(2.4)	64			
Gas for burners †	-	-	-	-	-			
Fume hoods †	-	-	-	-	-			

Item presented only to high school teachers.

Table STQ 50.2
Availability of Resources in Middle School Science Classes

	Percent of Classes								
	Not available						Available in another room		Located in your classroom
	20	(3.1)	16	(2.4)	64				
(3.5)									
Electric outlets	5	(2.1)	7	(2.4)	88				
(3.1)									
Faucets and sinks	8	(2.1)	17	(2.7)	75				
Gas for burners †	-	-	-	-	-				
Fume hoods †	-	-	-	-	-				

Item presented only to high school teachers.

Table STQ 50.3
Availability of Resources in High School Science Classes

	Percent of Classes					
	Not available		Available in another room		Located in your classroom	
Lab tables	6	(1.4)	16	(1.7)	78	(2.2)
Electric outlets	1	(0.8)	5	(0.8)	93	(1.1)
Faucets and sinks	3	(1.0)	14	(1.6)	83	(2.0)
Gas for burners	13	(1.7)	23	(1.8)	64	(2.5)
Fume hoods	18	(1.9)	44	(2.0)	38	(2.2)

Table STQ 51
Frequency of Required External Science Testing in Science Classes

	Percent of Classes				
	Elementary		Middle		High
Never	50	(2.3)	21	(1.6)	30
(1.5)					
Once a year	17	(1.6)	28	(2.2)	35
(1.6)					
Twice a year	8	(1.2)	13	(1.8)	13
(1.0)					
Three or four times a year	16	(1.6)	23	(2.0)	14
Five or more times a year	9	(1.6)	15	(1.4)	9

Table STQ 52
Amount of Homework Assigned in Science Classes per Week

	Percent of Classes					
	Elementary		Middle		High	
Fewer than 15 minutes per week	73	(2.8)	22	(2.2)	9	(1.1)
15-30 minutes per week	17	(2.5)	29	(2.7)	17	(1.6)
31-60 minutes per week	7	(2.0)	30	(2.6)	34	(2.1)
61-90 minutes per week	2	(1.2)	14	(2.1)	24	(1.8)
91-120 minutes per week	0	(0.2)	3	(0.8)	7	(1.1)
2-3 hours per week			0	(0.2)	6	(0.9)
3-4 hours per week	0	(0.3)	2	(1.6)	2	(0.4)
More than 4 hours per week	0	--- ${ }^{+}$	0	(0.2)	2	(0.6)

No teachers in the sample selected this response option. Thus, it is not possible to calculate the standard error of this estimate.

Table STQ 53
Instructional Materials Used in Science Classes

	Percent of Classes					
	Elementary		Middle		High	
One commercially-published textbook most of the time	26	(2.0)	34	(2.3)	52	(1.7)
Multiple commercially-published textbooks most of the time	5	(0.8)	11	(1.0)	7	(0.7)
Modules from a single publisher most of the time	12	(1.5)	11	(1.9)	2	(0.4)
Modules from multiple publisher most of the time	4	(1.0)	3	(0.7)	2	(0.4)
A roughly equal mix of commercially-published textbooks and commercially-published modules most of the time	22	(1.7)		(2.0)	15	(1.2)
Non-commercially-published instructional materials most of the time	31	(2.1)	20	(1.9)	23	(1.2)

Table STQ 54a
Most Recent Copyright Year of Instructional Materials Used in Science Classes

	Percent of Classes †				
	Elementary	Middle	High		
2012	6	(1.5)	7	(1.5)	4
(0.7)					
2011	6	(2.0)	3	(1.6)	3
(0.5)					
2010	6	(1.1)	4	(0.7)	7
		$1.0)$			
2009	5	(1.1)	6	(2.0)	7
2008	6	(1.1)	8	(1.6)	9
(1.3)					
2007	14	(2.5)	21	(1.8)	9
(1.2)					
2006 or earlier	58	(3.0)	52	(2.6)	60

Only classes of teachers indicating in Q53 that they use commercially-published textbooks/modules are included in this analysis.

Table STQ 54b. 1
Market Share of Commercial Textbook/Module Publishers Used in Elementary School Science Classes

	Percent of Classes †	
Houghton Mifflin Harcourt	47	(3.4)
McGraw-Hill	16	(2.4)
Pearson	15	(2.4)
Delta Education	11	(1.9)
National Geographic Society	4	(1.8)
Carolina Biological Supply Company	2	(0.8)
Discover Education	0	(0.4)
Scholastic	1	(0.4)
A Beka Book	0	(0.2)
ACSI Science	0	(0.2)
Answers in Genesis	0	(0.2)
Apologia Educational Ministries Inc.	0	(0.2)
Arizona Department of Education	0	(0.2)
Battle Creek Outreach Staff	0	(0.2)
Bob Jones University Press	0	(0.2)
Evan-Moor Educational Publishers	0	(0.2)
Fearon Teacher Aids	0	(0.2)
HarperCollins Children's Books	0	(0.2)
John Wiley \& Sons	0	(0.2)
Kendall Hunt	0	(0.2)
People's Publishing	0	(0.2)
Turtleback	0	(0.2)
United Publishing Company, Inc.	0	(0.2)
AIMS Education Foundation	0	(0.1)
Christian Schools International	0	(0.1)
Core Knowledge Foundation	0	(0.1)

${ }^{\dagger}$ Only classes of elementary school teachers indicating in Q53 that they use commercially-published textbooks/modules are included in this analysis.

Table STQ 54b. 2
Market Share of Commercial Textbook/Module Publishers Used in Middle School Science Classes

	Percent of Classes †	
Houghton Mifflin Harcourt	33	(2.9)
Pearson	31	(2.9)
McGraw-Hill	25	(2.6)
Lab-Aids	2	(1.6)
Delta Education	1	(0.7)
Carolina Biological Supply Company	2	(0.6)
CPO Science	1	(0.5)
ACSI Science	0	(0.3)
Bob Jones University Press	0	(0.3)
Cengage Learning	0	(0.2)
It's About Time	1	(0.2)
Kendall Hunt	0	(0.2)
National Geographic Society	0	(0.2)
Region 4 Education Service Center	0	(0.2)
Science Curriculum Inc.	0	(0.2)
Lawrence Hall of Science	0	(0.1)

${ }^{\dagger}$ Only classes of middle school teachers indicating in Q53 that they use commercially-published textbooks/modules are included in this analysis.

Table STQ 54b. 3
Market Share of Commercial Textbook/Module Publishers Used in High School Science Classes

	Percent of Classes †	
Pearson	$(23$	(2.2)
Houghton Mifflin Harcourt	22	(1.5)
McGraw-Hill	18	(1.3)
Cengage Learning	6	(0.8)
Bob Jones University Press	1	(0.7)
John Wiley \& Sons	1	(0.4)
Kendall Hunt	1	(0.4)
It's About Time	1	(0.3)
Sinauer Associates	0	(0.3)
W. H. Freeman	1	(0.3)
Apologia Educational Ministries Inc.	0	(0.2)
CPO Science	1	(0.2)
Delta Education	1	(0.2)
Ingram	1	(0.2)
Interstate Publishers	0	(0.2)
Jones and Bartlett Publishers, Inc.	0	(0.2)
Mosby-Year Book	0	(0.2)
Paradigm Pub International	0	(0.2)
University of Hawaii	0	(0.2)
American Book Company	0	(0.1)
Amsco	0	(0.1)
Cambridge University Press	0	(0.1)
Garland Science	0	(0.1)
International Thomson Publishing	0	(0.1)
Kinetic Books	0	(0.1)
Merrill	0	(0.1)
Monterey Bay Aquarium Press	0	(0.1)
Saunders College Publishers	0	(0.1)
Science Curriculum Inc.	0	(0.1)
United Publishing Company, Inc.	0	(0.1)
Cord Communications	0	(0.0)
J M Lebel Enterprises Ltd.	0	(0.0)
Lab-Aids	0	(0.0)
Lawyers \& Judges Publishers	0	(0.0)
W. W. Norton	0	(0.0)
William C Brown Publishers	0	(0.0)
Ony lase		

Only classes of high school teachers indicating in Q53 that they use commercially-published textbooks/modules are included in this analysis.

Table STQ 55
Perceived Quality of Instructional Materials Used Most Often in Science Classes

	Percent of Classes †				
	Elementary	Midde	High		
Very poor	6	(2.6)	2	(1.5)	1
(0.5)					
Poor	4	(1.4)	3	(1.0)	3
(0.8)					
Fair	19	(2.6)	18	(2.5)	20
(2.6)					
Good	32	(2.9)	32	(3.5)	32
Very good	32	(3.3)	36	(3.3)	33
Excellent	7	(1.8)	8	(2.6)	11
(1.5)					

Only classes of teachers indicating in Q53 that they use one or multiple commercially-published textbooks/modules are included in this analysis.

Table STQ 56
Percentage of Instructional Time Spent Using Instructional Materials during the Science Course

	Percent of Classes †					
	Elementary		Middle		High	
Less than 25%	15	(3.2)	25	(5.1)	46	(2.8)
$25-49 \%$	27	(3.4)	22	(3.3)	26	(2.3)
$50-74 \%$	22	(4.0)	26	(3.2)	15	(2.4)
$75-90 \%$	23	(3.5)	13	(2.6)	9	(1.6)
More than 90%	13	(3.0)	13	(4.6)	3	(1.4)

Only classes of teachers indicating in Q53 that they use one commercially-published textbook or modules from a single publisher are included in this analysis.

Table STQ 57
Percentage of Textbook/Modules Covered during the Science Course

	Percent of Classes ${ }^{\dagger}$					
	Elementary		Middle		High	
Less than 25 \%	13	(3.3)	3	(1.3)	8	(1.7)
25-49 \%	8	(2.6)	15	(3.9)	18	(2.4)
50-74 \%	27	(4.7)	35	(4.7)	33	(2.8)
75-90 \%	29	(4.7)		(5.0)	33	(3.4)
More than 90 \%	23	(4.4)	16	(4.8)	8	(1.6)

Only classes of teachers indicating in Q53 that they use one commercially-published textbook or modules from a single publisher are included in this analysis.

Table STQ 58
Adequacy of Equipment ${ }^{\dagger}$ for Science Instruction

	Percent of Classes									
	Not Adequate				Somewhat Adequate				Adequate	
	1		2		3		4		5	
Elementary	20	(1.7)	14	(1.4)	31	(1.6)	16	(1.4)	19	(2.0)
Middle	13	(1.8)	9	(1.0)	31	(2.3)	24	(1.7)		(1.9)
High		(0.9)	6	(0.8)	25	(1.5)	29	(1.5)	33	(1.5)

${ }^{\dagger}$ For example, microscopes, beakers, photogate timers, Bunsen burners.

Table STQ 59
Adequacy of Instructional Technology ${ }^{\dagger}$ for Science Instruction

	Percent of Classes						
	Not Adequate		Somewhat Adequate				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		
Elementary	15	(1.5)	14	(1.5)	39	(1.9)	16
(1.4)	16	(1.8)					
Middle	12	(1.5)	16	(1.7)	34	(2.3)	21
(1.8)	17	(1.6)					
High	10	(1.0)	10	(0.8)	31	(1.7)	26
(1.6)	24	(1.6)					

For example, calculators, computers, probes/sensors.

Table STQ 60
Adequacy of Consumable Supplies ${ }^{\dagger}$ for Science Instruction

	Percent of Classes									
	Not Adequate				Somewhat Adequate				Adequate	
	1		2		3		4		5	
Elementary	22	(1.6)	17	(1.3)	30	(1.8)	15	(1.4)	16	(1.5)
Middle	17	(1.8)	15	(1.7)	27	(2.1)	20	(1.8)	22	(1.7)
High	8	(1.0)	9	(1.0)	23	(1.3)	28	(1.3)	33	(1.7)

For example, chemicals, living organisms, batteries.

Table STQ 61
Adequacy of Facilities ${ }^{\dagger}$ for Science Instruction

	Percent of Classes									
	Not Adequate				Somewhat Adequate				Adequate	
	1		2		3		4		5	
Elementary	24	(1.8)	16	(1.7)	27	(1.7)	14	(1.4)	17	(2.0)
Middle	15	(2.0)	12	(1.8)	17	(1.5)		(2.1)	38	(2.5)
High	8	(1.0)	6	(0.8)	16	(1.1)	22	(1.3)	49	(1.7)

${ }^{\dagger}$ For example, lab tables, electric outlets, faucets and sinks.

Table STQ 62.1
Elementary School Science Classes
for which Teachers Report Technology Problems

	Percent of Classes					
	Not a Significant Problem	Somewhat of a Problem		Serious Problem		
	60	(2.7)	28	(2.5)	12	(1.5)
	64	(2.5)	25	(2.2)	11	(1.7)
	81	(2.4)	14	(2.0)	5	(1.1)
	79	(2.2)	15	(1.9)	6	(1.2)
	72	(2.6)	21	(2.4)	7	(1.3)
Lack of availability of appropriate computer software	54	(2.9)	34	(2.5)	12	(1.8)
Lack of availability of technology support	63	(2.9)	28	(2.9)	9	(1.4)

Table STQ 62.2
Middle School Science Classes
for which Teachers Report Technology Problems

	Percent of Classes					
	Not a Significant Problem	Somewhat of a Problem		Serious Problem		
Lack of access to computers	42	(3.0)	36	(2.7)	21	(2.9)
Old age of computers	53	(3.2)	23	(2.1)	25	(3.1)
Lack of access to the Internet	71	(3.0)	18	(2.2)	11	(2.4)
Unreliability of the Internet connection	63	(3.1)	27	(2.6)	9	(2.0)
Slow speed of the Internet connection	55	(3.2)	30	(2.7)	15	(2.7)
Lack of availability of appropriate computer software	53	(3.1)	33	(2.5)	15	(2.3)
Lack of availability of technology support	55	(2.9)	32	(2.7)	14	(2.0)

Table STQ 62.3
High School Science Classes
for which Teachers Report Technology Problems

	Percent of Classes				
	Not a Significant Problem	Somewhat of a Problem	Serious Problem		
Lack of access to computers	51	(2.4)	37	(2.2)	12
(1.6)					
Old age of computers	58	(2.1)	28	(1.8)	14
(1.7)					
Lack of access to the Internet	73	(2.2)	20	(1.7)	7
				(1.4)	
Unreliability of the Internet connection	66	(2.6)	24	(2.0)	10
Slow speed of the Internet connection	61	(2.3)	27	(2.2)	12
(1.5)					
Lack of availability of appropriate computer software	54	(2.3)	36	(2.0)	10
Lack of availability of technology support	59	(2.5)	28	(2.5)	12

Table STQ 63.1
Elementary School Science Classes for which Teachers Report the Effect of Various Factors on Science Instruction

	Percent of Classes										
	Inhibits Effective Instruction			Neutral or Mixed				Promotes Effective Instruction		N/A or Don't Know	
	1	2		3		4		5			
Current state standards	2 (0.7)	4	(1.0)	25	(2.2)	21	(2.5)	43	(2.6)	4	(1.0)
District/Diocese curriculum frameworks ${ }^{\dagger}$	3 (0.9)	5	(1.4)	26	(2.1)	21	(2.4)	39	(2.6)	5	(1.2)
District/Diocese and/or school pacing guides	4 (1.1)	7	(1.3)	27	(2.2)	22	(2.1)	27	(2.5)	13	(2.4)
State testing/accountability policies ${ }^{\dagger}$	6 (1.2)	10	(1.7)	33	(2.6)	14	(1.7)	19	(2.2)	18	(2.6)
District/Diocese testing/ accountability policies	5 (1.2)	11	(1.9)	31	(2.7)	13	(1.8)	21	(2.4)	19	(2.6)
Textbook/module selection policies ${ }^{\dagger}$	7 (1.4)	13	(2.1)	29	(2.3)	17	(1.8)	21	(2.0)	14	(2.3)
Teacher evaluation policies	3 (0.8)	6	(1.3)	36	(2.5)	16	(1.7)	26	(2.5)	14	(2.1)
College entrance requirements ${ }^{\ddagger}$		-	-	-	-	-	-	-	-	-	-
Students' motivation, interest, and effort in science	2 (0.7)	4	(1.1)	14	(1.7)	19	(1.9)	58	(2.2)	2	(0.6)
Students' reading abilities	5 (1.0)	17	(2.0)	20	(2.5)	26	(2.3)	31	(2.4)	2	(0.7)
Community views on science instruction	2 (0.8)	8	(1.4)	36	(2.3)	15	(1.9)	20	(2.1)	19	(2.4)
Parent expectations and involvement	5 (1.1)		(1.6)	33	(2.2)	18	(2.0)	24	(2.5)	11	(2.0)
Principal support	3 (0.8)		(0.9)	22	(2.2)	20	(2.4)	46	(3.1)	6	(1.1)
Time for you to plan, individually and with colleagues	10 (1.3)	17	(1.9)	17	(1.9)		(2.3)	36	(2.5)	3	(0.8)
Time available for your professional development	10 (1.5)	15	(1.9)	24	(1.9)		(2.2)	28	(2.3)	4	(0.9)

Item presented only to public and Catholic schools.
\ddagger Item presented only to high school teachers.

Table STQ 63.2
Middle School Science Classes for which
Teachers Report the Effect of Various Factors on Science Instruction

	Percent of Classes										
	Inhibits Effective Instruction			Neutral or Mixed				Promotes Effective Instruction		N/A or Don't Know	
	1	2		3		4		5			
Current state standards	6 (1.3)	7	(2.5)	21	(2.6)	19	(2.2)	46	(3.5)	1 (0.6)	
District/Diocese curriculum frameworks ${ }^{\dagger}$	3 (0.8)	8	(2.7)	22	(2.9)	21	(3.2)	39	(3.0)		(1.2)
District/Diocese and/or school pacing guides	5 (1.1)	8	(2.5)	31	(3.5)	15	(1.7)	29	(2.8)	13	(2.0)
State testing/accountability policies ${ }^{\dagger}$	11 (1.7)	16	(3.7)	31	(2.9)	16	(2.8)	18	(3.4)	7	(1.6)
District/Diocese testing/ accountability policies ${ }^{\dagger}$	6 (1.2)	13	(3.9)	35	(3.1)	14	(2.1)	19	(3.3)	12	(1.9)
Textbook/module selection policies	6 (1.3)	9	(1.3)	30	(3.1)	19	(3.0)	25	(3.4)	11	(2.4)
Teacher evaluation policies	4 (0.9)	5	(1.6)	39	(4.0)	20	(2.3)	27	(3.0)	5	(1.2)
College entrance requirements ${ }^{\ddagger}$	- -	-	-	-	-	-	-	-	-		-
Students' motivation, interest, and effort in science	5 (1.0)	13	(2.9)	16	(2.1)	26	(3.5)	40	(3.8)	0	(0.3)
Students' reading abilities	8 (1.2)	23	(2.9)	20	(2.3)	23	(3.3)	25	(3.1)		(0.3)
Community views on science instruction	4 (0.8)	8	(1.5)	34	(3.4)	23	(3.3)	22	(2.7)	9	(1.5)
Parent expectations and involvement	7 (1.4)	19	(3.2)	29	(3.7)	18	(2.6)	24	(2.9)	2	(0.7)
Principal support	3 (0.8)	4	(1.0)	16	(2.6)	23	(3.3)	53	(3.6)	2	(0.6)
Time for you to plan, individually and with colleagues	9 (2.3)	14	(2.9)		(1.8)	22	(3.6)	40	(3.3)		(0.5)
Time available for your professional development	$8 \quad$ (2.3)	14	(2.9)	21	(2.7)	25	(3.5)	30	(3.0)	1	(0.5)

Item presented only to public and Catholic schools.
₹ Item presented only to high school teachers.

Table STQ 63.3
High School Science Classes for which
Teachers Report the Effect of Various Factors on Science Instruction

	Percent of Classes										
	Inhibits Effective Instruction 1	2		$\begin{gathered} \begin{array}{c} \text { Neutral or } \\ \text { Mixed } \end{array} \\ \hline 3 \end{gathered}$		4		PromotesEffectiveInstruction		$\begin{gathered} \text { N/A } \\ \text { or } \\ \text { Don't } \\ \text { Know } \end{gathered}$	
Current state standards	3 (0.7)	8	(1.5)	32	(1.9)	21	(1.5)	28	(1.6)	8	(1.4)
District/Diocese curriculum frameworks ${ }^{\dagger}$	4 (0.7)	5	(0.9)	28	(1.9)	19	(1.5)	28	(1.7)	15	(1.5)
District/Diocese and/or school pacing guides	5 (0.9)	8	(1.2)	26	(2.0)	16	(1.4)	20	(1.4)	25	(2.0)
State testing/accountability policies ${ }^{\dagger}$	9 (1.6)	14	(1.3)	36	(2.2)	15	(1.2)	10	(1.2)	15	(1.3)
District/Diocese testing/ accountability policies ${ }^{\dagger}$	7 (1.1)	10	(1.3)	34	(2.2)	15	(1.5)	12	(1.3)	21	(1.5)
Textbook/module selection policies	5 (0.9)	8	(1.6)	30	(1.8)	20	(1.7)	22	(2.0)	15	(1.5)
Teacher evaluation policies	2 (0.5)	5	(0.8)	36	(2.0)	21	(1.7)	25	(1.5)	11	(1.5)
College entrance requirements	1 (0.4)	3	(0.9)	30	(1.9)	22	(2.0)	30	(1.7)	14	(1.7)
Students' motivation, interest, and effort in science	7 (1.0)	13	(1.3)	18	(1.6)	24	(1.5)	37	(2.1)	2	(0.6)
Students' reading abilities	10 (1.2)	17	(1.9)	22	(2.2)	21	(1.6)	29	(2.3)	2	(0.5)
Community views on science instruction	2 (0.6)	9	(1.3)	36	(2.0)	20	(1.6)	23	(1.8)	11	(1.2)
Parent expectations and involvement	4 (0.8)	13	(1.5)	29	(1.9)	21	(1.6)	28	(2.0)	4	(0.8)
Principal support	2 (0.6)	3	(0.7)	20	(1.8)	22	(1.4)	50	(2.0)	3	(0.7)
Time for you to plan, individually and with colleagues	8 (1.4)	11	(1.5)	20	(1.8)	22	(2.1)	36	(2.3)	3	(0.7)
Time available for your professional development	$6 \quad(0.8)$	13	(2.0)	28	(2.1)	19	(1.6)	30	(2.2)	5	(0.8)

Item presented only to public and Catholic schools.

Table STQ 64
Average Number of Class Periods
Devoted to the Most Recently Completed Science Unit

	Average Number of Periods
Elementary	12.3
(0.5)	
Middle	$15.3(0.5)$
High	$11.4 \quad(0.2)$

Table STQ 65
Focus of the Most Recently Completed Science Unit

	Percent of Classes				
	Elementary		Middle		High
Earth/Space Science	40	(2.1)	34	(2.2)	9
(0.9)					
Life Science/Biology	35	(2.2)	31	(2.5)	39
(1.5)					
Environmental Science/Ecology	8	(1.1)	7	(1.2)	5
(0.7)					
Chemistry	4	(0.9)	12	(1.5)	27
Physics	12	(1.2)	15	(1.5)	18
Engineering	2	(0.4)	1	(0.3)	0

There is no table for STQ 66.

Table STQ 67
Most Recent Science Unit Based Primarily on
Previously Indicated Commercially-Published Textbook/Module

	Percent of Classes †
Elementary	$71 \quad(2.4)$
Middle	$63(2.3)$
High	$66 \quad(1.8)$

Only classes of teachers indicating in Q53 that they use commercially-published textbooks/modules in their most recent unit are included in this analysis.

Table STQ 68
Most Recent Science Unit Based Primarily on Any Commercially-Published Textbook/Module

	Percent of Classes
Elementary	52
Middle	(2.4)
High	58

There is no table for STQ 69.

Table STQ 70.1
Ways Textbooks/Modules Were Used in the Most Recently Completed Unit in Elementary School Science Classes

	Percent of Classes ${ }^{\dagger}$									
	$\begin{gathered} \text { Not } \\ \text { at All } \end{gathered}$		Somewhat						To a Great Extent	
		1		2		3		4		
You used the textbook/module to guide the overall structure and content emphasis of the unit	2	(0.7)	2	(0.7)	19	(2.5)	34	(2.8)	43	(3.3)
You followed the textbook/module to guide the detailed structure and content emphasis of the unit		(0.8)	5	(1.1)	27	(2.4)	33	(2.4)	32	(2.7)
You picked what is important from the textbook/module and skipped the rest		(2.1)		(2.3)	25	(2.4)	26	(2.1)	16	(1.9)
You incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking	7	(1.5)		(1.4)	21	(1.9)	32	(2.4)	33	(2.5)

Only classes of elementary school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit are included in this analysis.

Table STQ 70.2
Ways Textbooks/Modules Were Used in the Most Recently Completed Unit in Middle School Science Classes

	Percent of Classes ${ }^{\dagger}$								
	$\begin{aligned} & \text { Not } \\ & \text { at All } \end{aligned}$	Somewhat						To a Great Extent	
	1	2		3		4		5	
You used the textbook/module to guide the overall structure and content emphasis of the unit	2 (0.8)	4	(1.0)	28	(2.4)	28	(2.4)	37	(2.9)
You followed the textbook/module to guide the detailed structure and content emphasis of the unit	$4 \quad(1.0)$	8	(1.5)	37	(2.9)	25	(2.4)	26	(2.8)
You picked what is important from the textbook/module and skipped the rest	11 (2.1)	15	(2.2)	25	(2.5)	27	(2.3)	22	(2.5)
You incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking	$4 \quad$ (1.7)	4	(1.0)	18	(2.3)	30	(2.0)	45	(2.7)

Only classes of middle school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit are included in this analysis.

Table STQ 70.3
Ways Textbooks/Modules Were Used in the Most Recently Completed Unit in High School Science Classes

	Percent of Classes ${ }^{\dagger}$								
	Not at all			Somewhat		4		To a Great Extent	
	1	2			3				
You used the textbook/module to guide the overall structure and content emphasis of the unit	1 (0.4)	4	(0.7)	32	(1.9)	36	(2.0)	27	(2.2)
You followed the textbook/module to guide the detailed structure and content emphasis of the unit	$5 \quad(0.8)$		(1.1)		(2.1)	30	(2.0)	15	(1.7)
You picked what is important from the textbook/module and skipped the rest	11 (1.6)		(1.2)	24	(1.8)		(1.9)	22	(1.7)
You incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking	$3 \quad(1.3)$	3	(0.5)	16	(1.5)	36	(1.9)	43	(2.0)

Only classes of high school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit are included in this analysis.

Table STQ 71.1
Reasons Parts of the Textbook/Module Were Skipped in Elementary School Science Classes

	Percent of Classes †					
	Not a Factor		A Minor Factor	A Major Factor		
The science ideas addressed in the activities you skipped are not included in your pacing guide and/or current state standards You did not have the materials needed to implement the activities you skipped	34	(3.5)	39	(4.2)	27	(3.6)
The activities you skipped were too difficult for your students You students already knew the science ideas or were able to learn them without the activities you skipped	38	(3.4)	35	(3.8)	27	(3.4)
You have different activities for those science ideas that work better than the ones you skipped	40	(4.0)	36	(3.9)	14	(2.5)

Only classes of elementary school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "picked what was important from the textbook/module and skipped the rest" at all are included in this analysis.

Table STQ 71.2
 Reasons Parts of the Textbook/Module Were Skipped in Middle School Science Classes

	Percent of Classes ${ }^{\dagger}$					
	Not a Factor		A Minor Factor		A Major Factor	
The science ideas addressed in the activities you skipped are not included in your pacing guide and/or current state standards	35	(5.0)	27	(2.9)	38	(5.0)
You did not have the materials needed to implement the activities you skipped	39	(5.2)	39	(5.3)	22	(4.0)
The activities you skipped were too difficult for your students	53	(5.0)	40	(4.8)	7	(1.8)
Your students already knew the science ideas or were able to learn them without the activities you skipped	44	(4.1)	35	(3.3)	21	(4.4)
You have different activities for those science ideas that work better than the ones you skipped	11	(3.2)	35	(5.3)	54	(5.1)

Only classes of middle school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "picked what was important from the textbook/module and skipped the rest" at all are included in this analysis.

Table STQ 71.3
Reasons Parts of the Textbook/Module Were Skipped in High School Science Classes

	Percent of Classes †					
	Not a Factor		A Minor Factor	A Major Factor		
The science ideas addressed in the activities you skipped are not included in your pacing guide and/or current state standards	40	(3.1)	32	(3.0)	29	(2.8)
You did not have the materials needed to implement the activities you skipped	51	(3.1)	33	(3.1)	16	(2.1)
The activities you skipped were too difficult for your students Your students already knew the science ideas or were able to learn them without the activities you skipped	51	(3.1)	35	(2.9)	15	(2.4)
You have different activities for those science ideas that work better than the ones you skipped	43	(2.9)	38	(2.9)	18	(2.5)

Only classes of high school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "picked what was important from the textbook/module and skipped the rest" at all are included in this analysis.

Table STQ 72.1
Reasons Why the Textbook/Module Was Supplemented in Elementary School Science Classes

	Percent of Classes ${ }^{\dagger}$					
	Not a Factor			A Minor Factor	A Minor Factor	
Your pacing guide indicated that you should use supplemental activities Supplemental activities were needed to prepare students for standardized tests	42	(3.2)	37	(3.1)	21	(3.3)
Supplemental activities were needed to provide students with additional practice	51	(4.1)	30	(3.6)	20	(4.0)
Supplemental activities were needed so students at different levels of achievement could increase their understanding of the ideas targeted in each activity	14	(2.1)	44	(4.2)	42	(4.2)

Only classes of elementary school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking" at all are included in this analysis.

Table STQ 72.2
Reasons Why the Textbook/Module
Was Supplemented in Middle School Science Classes

	Percent of Classes †					
	Not a Factor		A Minor Factor	A Minor Factor		
Your pacing guide indicated that you should use supplemental activities Supplemental activities were needed to prepare students for standardized tests	51	(4.6)	35	(4.0)	14	(2.5)
Supplemental activities were needed to provide students with additional practice	37	(5.4)	37	(4.7)	26	(3.2)
Supplemental activities were needed so students at different levels of achievement could increase their understanding of the ideas targeted in each activity	6	(2.4)	39	(4.4)	55	(3.5)

${ }^{\dagger}$ Only classes of middle school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking" at all are included in this analysis.

Table STQ 72.3
Reasons Why the Textbook/Module
Was Supplemented in High School Science Classes

	Percent of Classes †					
	Not a Factor		A Minor Factor		A Minor Factor	
Your pacing guide indicated that you should use supplemental activities Supplemental activities were needed to prepare students for standardized tests	63	(2.5)	28	(2.6)	9	(1.7)
Supplemental activities were needed to provide students with additional practice	47	(3.3)	34	(2.9)	19	(2.2)
Supplemental activities were needed so students at different levels of achievement could increase their understanding of the ideas targeted in each activity	7	(1.6)	34	(3.2)	59	(3.5)

Only classes of high school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit and indicating in Q70 that they "incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what the textbook/module was lacking" at all are included in this analysis.

Table STQ 73.1
Elementary School Science Classes Taught by Teachers Feeling Prepared for Each of a Number of Tasks in the Most Recent Unit

Item presented only to elementary school teachers indicating in Q67/68 that they used commercially-published textbooks/ modules in their most recent unit.

Table STQ 73.2
Middle School Science Classes Taught by Teachers
Feeling Prepared for Each of a Number of Tasks in the Most Recent Unit

Item presented only to middle school teachers indicating in Q67/68 that they used commercially-published textbooks/ modules in their most recent unit.

Table STQ 73.3
High School Science Classes Taught by Teachers
Feeling Prepared for Each of a Number of Tasks in the Most Recent Unit

	Percent of Teachers					
	Not Adequately Prepared	Somewhat Prepared	Fairly Well Prepared		Very Well Prepared	
Anticipate difficulties that students will have with particular science ideas and procedures in this unit	1 (0.3)	8 (0.9)	43	(1.5)	49	(1.5)
Find out what students thought or already knew about the key science ideas	$1 \quad(0.2)$	12 (1.1)	45	(1.4)	42	(1.4)
Implement the science textbook/module to be used during this unit ${ }^{\dagger}$	1 (0.3)	8 (1.2)	39	(2.1)	52	(2.3)
Monitor student understanding during this unit	0 (0.1)	6 (0.8)	37	(1.4)	57	(1.6)
Assess student understanding at the conclusion of this unit	$0 \quad(0.1)$	3 (0.6)	33	(1.6)		(1.6)

Item presented only to high school teachers indicating in Q67/68 that they used commercially-published textbooks/modules in their most recent unit.

Table STQ 74
Science Classes in which Teachers Used Various Assessment Methods in the Most Recent Unit

	Percent of Classes					
	Elementary		Middle		High	
Administered an assessment, task, or probe at the beginning of the unit to find out what students thought or already knew about the key science ideas	54	(2.0)	62	(2.1)	53	(1.4)
Questioned individual students during class activities to see if they were "getting it"	94	(0.9)	95	(1.4)	97	(0.5)
Used information from informal assessments of the entire class (e.g., asking for a show of hands, thumbs up/thumbs down, clickers, exit tickets) to see if students were "getting it"	87	(1.3)	86	(1.8)	80	(1.3)
Reviewed student work (e.g., homework, notebooks, journals, portfolios, projects) to see if they were "getting it"	89	(1.4)	96	(0.7)	94	(0.7)
Administered one or more quizzes and/or tests to see if students were "getting it"	52	(2.5)	82	(1.7)	81	(1.3)
Had students use rubrics to examine their own or their classmates' work	14	(1.5)	27	(2.0)	18	(1.2)
Assigned grades to student work (e.g., homework, notebooks, journals, portfolios, projects)	60	(1.8)		(0.9)		(0.7)
Administered one or more quizzes and/or tests to assign grades	56	(2.4)	90	(1.5)	91	(0.7)
Went over the correct answers to assignments, quizzes, and/or tests with the class as a whole	62	(2.2)	89	(1.7)	88	(1.0)

Table STQ 75
Duration of the Most Recent Science Lesson

	Average Number of Minutes
Elementary	45.6 (1.3)
Middle	$56.3(1.1)$
High	$63.2(0.9)$

Table STQ 76
Time Spent on Different Activities in the Most Recent Science Lesson

	Average Percent of Class Time				
	Elementary			Midde	

Table STQ 77
Science Classes Participating in Various Activities in the Most Recent Lesson

	Percent of Classes					
	Elementary		Middle		High	
Teacher explaining a science idea to the whole class	89	(1.2)	89	(1.4)	90	(0.9)
Whole class discussion	91	(1.1)	77	(1.8)	67	(1.4)
Students completing textbook/worksheet problems	43	(1.8)	51	(2.2)	59	(1.6)
Teacher conducting a demonstration while students watched	40	(2.0)	32	(2.4)	32	(1.4)
Students doing hands-on/manipulative activities	52	(1.9)	50	(2.3)	39	(1.5)
Students reading about science	53	(2.2)	50	(2.1)	35	(1.5)
Students using instructional technology	22	(1.5)	30	(2.0)	27	(1.4)
Practicing for standardized tests	5	(0.8)	9	(1.2)		(0.8)
Test or quiz	12	(1.2)	22	(2.0)	20	(1.4)
None of the above	0	(0.1)	0	(0.3)	1	(0.3)

Table STQ 78
Sex of Science Teachers

	Percent of Teachers					
	Elementary			Middle		High
Male	6	(0.8)	30	(2.0)	46	(1.4)
Female	94	(0.8)	70	(2.0)	54	(1.4)

Table STQ 79
Science Teachers of Hispanic or Latino Origin

	Percent of Teachers
Elementary	$8 \quad(1.4)$
Middle	$5(1.0)$
High	4

Table STQ 80 Race of Science Teachers

	Percent of Teachers				
	Elementary			Midde	High
American Indian or Alaska Native	1	(0.4)	1	(0.3)	2
(0.4)					
Asian	2	(0.5)	2	(0.8)	3
(0.6)					
Black or African American	6	(1.2)	6	(1.3)	4
(0.5)					
Native Hawaiian or Other Pacific Islander	1	(0.3)	0	(0.2)	1
White	92	(1.4)	91	(1.4)	93

Table STQ 81
Age of Science Teachers

	Percent of Teachers				
	Elementary	Middle		High	
Less than 31 years old	18	(1.5)	11	(1.0)	16
(1.4)					
31-40 years old	29	(1.8)	28	(2.2)	30
(1.3)					
41-50 years old	25	(1.8)	28	(2.1)	24
51-60 years old	20	(1.4)	26	(2.5)	22
More than 60 years old	8	(1.1)	7	(1.5)	7
M					

