NSSNE THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

The 2018 NSSME+

FEBRUARY 7, 2019

Daniel Heck Kristen Malzahn Courtney Plumley Nadine Bezuk, Discussant

harizon RESEAD

Session Overview

- About the 2018 NSSME+
- Brief Overview of Current Status of Mathematics
 Instruction
- Resources for Instruction
- The Mathematics Teaching Force
- Professional Development Experiences
- Implications for Teacher Preparation and Support

About the 2018 NSSME+

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977.
- It is the only survey specific to STEM education that provides nationally representative results.

E NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

E NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Topics Addressed

Six different survey instruments

- Characteristics of the science/math/computer science teaching force:
 - demographics
 - preparation for teaching
 - beliefs about teaching and learning
 - perceptions of preparedness
- Instructional practices
- Factors that shape teachers' decisions about content and pedagogy
- Use of instructional materials
- Opportunities teachers have for professional growth
- How instructional resources are distributed

ENATIONAL SURVEY OF ENCE & MATHEMATICS EDUCATION

Who's In the Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K-12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Endorsing Organizations

- American Association of Chemistry Teachers
- American Association of Physics Teachers
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- American Society for Engineering Education
- Association of State Supervisors of Mathematics
- Association for Science Teacher Education
- Council of State Science Supervisors
- Computer Science Teachers Association

- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers
 Association
- National Education Association
- National Science Education Leadership Association
- National Science Teachers
 Association

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

After data collection, design weights were computed, adjusted for nonresponse, and applied to the data.

Why should you care?

The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes—<u>not</u> characteristics of the respondents.

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

www.horizon-research.com/NSSME

Current reports:

- Technical report
- Highlights report
- Compendium of Tables

Follow us on Twitter:

@NSSMEatHRI #NSSME

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

What mathematics instruction are students experiencing? *

- Instructional time
- Objectives
- Math Practices

HE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Instructional Time: Elementary

INC.

Objectives Receiving a Heavy Emphasis

Elementary Middle High

HE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Instructional Activities: Weekly

Engagement in Standards for Mathematical Practice

The 2018 NSSME+ included a series of items asking how often students were engaged in aspects of the mathematical practices:

- 1. Make sense of problems and persevere in solving them
- 2. Reason abstractly and quantitatively
- 3. Construct viable arguments/critique reasoning of others
- 4. Model with mathematics
- 5. Use appropriate tools strategically
- 6. Attend to precision
- 7. Look for and make use of structure
- 8. Look for and express regularity in repeated reasoning

Engagement in Standards for Mathematical Practice

In the ideal, how often should students engage with these math practices?

- Determine whether their answers make sense
- Develop a mathematical model to solve a mathematics problem
 - A. DailyB. WeeklyC. Less often

IE NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Standards for Mathematical Practice: Weekly

Standards for Mathematical Practice: Daily

Why Might Instruction Look This Way?

- State, district, school policies
- Availability of resources, including instructional materials

HE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

State, District, and School Policies

What percentage of elementary classes are required to take three or more state/district mathematics assessments in a year?

A. 25%
B. 50%
C. 75%
D. 100%

E NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Required External Mathematics Testing

	Percent of Classes			
	Elementary	Middle	High	
Never	9	1	20	
Once a year	9	12	25	
Twice a year	9	11	22	
Three or four times a year	48	43	24	
Five or more times a year	25	33	10	

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

harizon RESEARCH, INC.

For most classes, districts designate instructional materials to be used:

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

INC

	Percent of Classes			
	Elementary	Middle	High	
Commercially published textbooks	89	88	91	
State, county, or district-developed units or lessons	44	37	32	
Lessons or resources from websites that are free	28	30	24	
Lessons or resources from websites that have a subscription fee or cost	31	22	15	
Self-paced online courses or units	33	33	13	

harizon RESEARCH, INC.

What Teachers Use (Weekly)

	Percent of Classes			
	Elementary	Middle	High	
Commercially published textbooks	76	65	61	
Teacher-developed units or lessons	44	65	78	
Units or lessons from other sources (e.g., conferences, colleagues)	30	31	35	
Lessons or resources from websites that are free	37	39	27	
State, county, or district-developed units or lessons	41	26	23	
Lessons or resources from websites that have a cost	54	34	19	
Self-paced online courses or units	36	24	12	

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

Research, INC.

Instruction Take-Aways

Developing conceptual understanding and learning how to do math receive heavy emphases in most classes across grade bands

Lecture, whole class discussion, and small group work are all common activities in most mathematics classes

Most math classes engage with the Standards for Mathematical Practice on a weekly basis, but most do not engage with them daily

Most math classes, particularly at the elementary and middle school level, have a lot of external assessments

Teachers use a hodgepodge of instructional materials raising questions about quality and coherence

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

The Mathematics Teaching Force

The 2018 NSSME+ collected data about:

- Demographics of teachers
- Path to certification
- College coursework
- Beliefs about teaching and learning
- Feelings of preparedness

True or False?

The majority of teachers of mathematics have 11 or more years of teaching experience.

E NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Teaching Experience

INC.

CS EDUCATION

Paths to Certification

About what percentage of middle school mathematics teachers hold a degree in mathematics or mathematics education?

- A. 25%
- B. 50%
- C. 75%
- D. 100%

Degree in Mathematics or Mathematics Education

What percentage of teachers believe they should ask students to justify their mathematical thinking?

- A. 25%
- B. 50%
- C. 75%
- D. 100%

orizon

Teacher Beliefs

Teachers should ask students to justify their math thinking						97 99 98
Students should learn math by doing math						97 97 96
Most class periods should have students share their thinking and reasoning						96 95 94
Students learn best when instruction is connected to their everyday lives					8	97 93 5
It is better for instruction to focus on ideas in depth, even if it means covering fewer topics					77	89
	0	20	40	60	80	100
Percent of Teachers						
Elementary Middle High						

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

harizon RESEARCH, INC.

1

Teacher Beliefs

Students should be provided with vocabulary and definitions at beginning of instruction

Students learn best in classes with students of similar abilities

Hands-on/manipulatives should be used primarily as reinforcement

Teachers should explain ideas before students investigate

Elementary Middle High

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

Perceptions of Preparedness

The 2018 NSSME+ included items about teachers' feelings of preparedness to:

- Teach various math topics
- Use student-centered pedagogies, e.g.;
 - Use formative assessment
 - Develop student abilities to do math
 - Encourage student interest in math
 - Differentiate instruction
 - Incorporate students' cultural backgrounds into instruction

Teacher Composite Scores

CS EDUCATION

INC

Elementary Mathematics Teachers' Coursework Related to NCTM Preparation Standards

Percent of Elementary Teachers

NSSME THE NATIO

Middle School Mathematics Teachers' Coursework Related to NCTM Preparation Standards

Percent of Middle School Teachers

HE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

High School Mathematics Teachers' Coursework Related to NCTM Preparation Standards

Percent of High School Teachers

IE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Mathematics Teaching Force Take-Aways

A sizeable proportion of the mathematics teaching force is newer. Retention, professional development, and support for these teachers now is essential for the long term stability of the teaching force

Teachers' beliefs about teaching and learning indicate only partial alignment with what is known about how students best learn mathematics.

Teachers' sense of their pedagogical preparedness is encouraging but still an important concern.

Across grade levels, teachers generally perceive they are well prepared regarding the math content they teach, although many lack the breadth and extent of formal preparation that is recommended.

E NATIONAL SURVEY OF ENCE & MATHEMATICS EDUCATION

Inservice Support

The 2018 NSSME+ asked about:

- School/district-offered induction programs
- School/district-offered professional development (workshops, study groups/PLCs, coaching)
- Teacher PD experiences

Ideally, how long should induction programs last?

- A. One year or less
- B. Two years
- C. Three or more years

Ideally, what supports should be provided?

HE NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

Length of Formal Induction Program

Induction Programs

Common features

- An orientation meeting
- Formal school-based mentor
- Subject-specific PD opportunities
- Release time to observe other teachers
- Common planning time with experienced teachers

Uncommon features

- Classroom aide/teaching assistant
- Reduced number of preparations
- Reduced course load
- Reduced class size

Professional Development

About what percentage of elementary teachers have had <u>any</u> mathematics-related PD in the last three years?

- A. 40%
- B. 60%
- C. 80%
- D. 100%

IE NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Hours of Mathematics PD in Last 3 Years

EDUCATION

	Percent of Teachers Attending PD				
	Elementary	Middle	High		
Work closely with teachers in school	69	72	67		
Work with those teaching same subject or grade level	56	58	57		
Apply what they learn in classroom and come back to discuss	44	46	46		
Examine classroom artifacts	46	49	44		
Engage in math investigations	46	47	43		
Experience lessons as students	48	45	42		
Rehearse instructional practices	35	34	32		

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

harizon RESEARCH, INC.

Given what you know, what area(s) do you think require the greatest emphasis in PD for mathematics teachers?

- 1. Deepening teachers' content knowledge
- 2. Differentiating instruction
- 3. Implementing instructional materials
- 4. Learning about difficulties students may have with mathematical ideas
- 5. Making instruction culturally relevant
- 6. Monitoring student understanding

Emphasis of PD

Topics Receiving Heavy Emphasis

Schools Offering Teacher Study Groups in Math in Last 3 Years

Teacher Study Groups

Common activities

- Analyze student math assessment results (81%)
- Plan lessons together (63%)
- Analyze instructional materials (60%)

Uncommon activities

- Provide feedback on math instruction (30%)
- Rehearse instructional practices (28%)
- Observe each others' math instruction (26%)

One-on-one Coaching

Approximately what percent of elementary schools offer one-on-one coaching focused on mathematics?

- A. 20%
- B. 40%
- C. 60%
- D. 80%

Schools Providing One-on-One Coaching in Math

Inservice Support Take-Aways

A large majority of schools have new teacher induction programs, though duration and nature vary

PD often has characteristics identified as high quality

PD is emphasizing key areas such as differentiating instruction and monitoring student understanding, but is less likely to focus on culturally responsive teaching

One-on-one coaching is a somewhat uncommon practice in schools and is not reaching a high proportion of teachers

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Reflecting on these findings in relation to the AMTE *Standards for Preparing Teachers of Mathematics* (SPTM)

Nadine Bezuk San Diego State University Leader of the AMTE Standards' Writing Team

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Standards for Preparing Teachers of Mathematics

Comprehensive, aspirational standards describing a national vision for the initial preparation of all teachers PreK-12 who teach mathematics.

E NATIONAL SURVEY OF CIENCE & MATHEMATICS EDUCATION

harizon RESEARCH, INC.

Purposes of the AMTE *Standards*

- Improve individual teacher
 preparation programs
- Inform the accreditation process
- Promote national dialogue and action related to mathematics teacher preparation
- www.amte.net/standards

Foundational Assumptions of the AMTE Standards

- **#1: Deep, integrated focus on equity**
- **#2: Career-long learning**
- **#3: Central focus on mathematics**
- #4: Responsibility of multiple stakeholders
- **#5: Commitment to improving effectiveness**

- Standards for Well-prepared Beginning Teachers of Mathematics:

 Candidate Knowledge, Skills, and Dispositions (4 standards)
- Standards for Effective Programs for Preparing Beginning Teachers of Mathematics:
 - -Program Characteristics (5 standards)

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Candidate Knowledge, Skills, and Dispositions

Standards:

- C.1. Mathematics Concepts, Practices, and Curriculum
- C.2. Pedagogical Knowledge and Practices for Teaching Mathematics
- **C.3. Students as Learners of Mathematics**
- C.4. Social Contexts of Mathematics Teaching and Learning

IE NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Program Characteristics

Standards:

- P.1. Partnerships
- P.2. Opportunities to Learn Mathematics
- P.3. Opportunities to Learn to Teach Mathematics
- P.4. Opportunities to Learn in Clinical Settings
- P.5. Recruitment and Retention of Teacher Candidates

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

Improvement Requires Engagement of Multiple Constituencies

- 1. Collaborate with mathematics educators, mathematicians and statisticians
- 2. Close, respectful, bidirectional relationships with Pre-K–12 schools and districts
- 3. Focus on the Standards by the research community
- 4. Collaborations across programs
- 5. Support of administrators
- 6. Focus on the Standards by AMTE
- 7. Engagement of other organizations

