NSSME

Unequal

Distribution of Educational
Resources for K-12 Science Instruction

NARST
APRIL 2, 2019

Who We Are

Horizon Research, Inc. is an education research and evaluation firm specializing in STEM education, located in Chapel Hill, NC.

About the 2018 NSSME+

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977.
- It is the only survey specific to STEM education that provides nationally representative results.

2018 NSSME+

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Endorsing Organizations

- American Association of Chemistry Teachers
- American Association of Physics Teachers
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- American Society for Engineering Education
- Association of State Supervisors of Mathematics
- Association for Science Teacher Education
- Council of State Science Supervisors
- Computer Science Teachers Association
- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers Association
- National Education Association
- National Science Education Leadership Association
- National Science Teachers Association

Situating the Work

- The 2018 NSSME+ was NOT designed primarily as an equity study.
- We are experts in large-scale survey research.
- We are NOT equity experts.

NARST 2019 Theme

"Creating and Sustaining Collective Activism through Science Education Research"

Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K-12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Topics Addressed

- Characteristics of the science/mathematics/ computer science teaching force
- Instructional practices
- Factors that shape teachers' decisions about content and pedagogy
- Use of instructional materials
- Opportunities teachers have for professional growth
- How instructional resources are distributed

Interpreting Results

After data collection, design weights were computed, adjusted for nonresponse, and applied to the data.

Why should you care?

The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes-not characteristics of the respondents.

Approach

Equitable distribution of education resources:

- Well-prepared teachers
- Supportiveness of context
- Nature of instruction

Approach

Factors historically associated with differences in students' educational opportunities:

- School-level Factors
- Percentage of students in the school eligible for free or reduced-price lunch (FRL)
- School size
- School community type (rural, urban, suburban)
- Class-level Factors
- Percentage students in the class from race/ethnicity groups historically underrepresented in STEM (HU)
- Prior achievement level of students in the class

Correlations Between Factors

Correlations between:

- Percent of students from historically underrepresented groups and percent of students eligible for free/reduced-price lunch
- Prior achievement and percent of students from historically underrepresented groups
- School size and community type

Symposium Structure

- Three 15 minute talks
- Well-prepared teachers
- Material resources
- Nature of instruction
- 10 minutes for group discussion following each talk
- padlet

Well-Prepared Teachers

NSSME+ collected data on teachers including:

- Background
- Perceptions of preparedness (content \& pedagogical)
- Professional development opportunities

Characteristics of the Teaching Force

	Percent of Teachers		
	Elementary	Middle	High
Sex			
Female	9	71	57
Male	6	28	43
Race/Ethnicity	88	91	91
White	8	8	5
Black or African-American	9	7	6
Hispanic or Latino	2	2	5
Asian	1	2	2
American Indian/Alaskan Native	1	0	0
Native Hawaiian/Other Pacific Islander	1		

Classes Taught by Teachers from Historically Underrepresented Groups

Classes Taught by Novice Teachers

Percent HU in Class*

Classes Taught by Novice Teachers

Percent FRL in School*

Classes Taught by Teachers with a Substantial Science Content Background

THE NATIONAL SURVEY OF
SCIENCE \& MATHEMATICS EDUCATION

Teacher Preparedness

Preparedness to Teach Science Content
 Composite:

- Calculated based on topics taught in a randomly selected class
- Defined differently across subjects and grade ranges
- Earth Science:
- Earth's features and physical processes
- The solar system and the universe
- Climate and weather

Preparedness to Teach Science Content Composite

Percent HU in Class*

THE NATIONAL SURVEY OF
SCIENCE \& MATHEMATICS EDUCATION

Preparedness to Teach Science Content Composite

Percent FRL in School*

School Size*

Teacher Preparedness

Perceptions of Pedagogical Preparedness Composite:

- Develop students' conceptual understanding of the science ideas you teach
- Develop students' abilities to do science
- Develop students' awareness of STEM careers
- Provide science instruction that is based on student's ideas about the topics you teach
- Use formative assessment to monitor student learning
- Differentiate science instruction
- Incorporate students' cultural backgrounds into science instruction
- Encourage students' interest in science and/or engineering
- Encourage participation of all students in science and/or engineering

Pedagogical Preparedness Composite

School Size*

Classes Taught by Teachers With More Than 35 Hours of Science PD in the Last Three Years

Percent HU in Class*

Classes Taught by Teachers with More than 35 Hours of Science PD in the Last Three Years

School Size*

Science-Focused Workshops

	Percent of Schools
Percent of Students in School Eligible for FRL*	
Lowest Quartile	44
Highest Quartile	56
School Size*	
Smallest Schools	42
Largest Schools	62
Community*	
Rural	37
Suburban	53
Urban	59

Effective PD

Extent Professional Development Aligns with Elements of Effective Professional Development Composite:

- Worked closely with other teachers from their school
- Worked closely with other teachers who taught the same grade and/or subject whether or not from their school
- Had opportunities to engage in science investigations/ engineering design challenges
- Had opportunities to experience lessons as their students would
- Had opportunities to apply what they learned to their class room and then come back and talk about it
- Had opportunities to examine classroom artifacts
- Had opportunities to rehearse instructional practices

Alignment with Elements of Effective PD Composite

Alignment with Elements of Effective PD Composite

Community Type*

THE NATIONAL SURVEY OF
SCIENCE \& MATHEMATICS EDUCATION

PD Supports Student-Centered Instruction Composite

Extent Professional Development Supports StudentCentered Instruction Composite:

- Deepening your own science content knowledge
- Deepening your understanding of how science is done
- Deepening your understanding of how engineering is done
- Implementing the science textbook/modules to be used in your classroom
- Learning about difficulties that students may have with particular science ideas
- Finding out what students think or already know prior to instruction on a topic
- Monitoring student understanding during science instruction
- Differentiating science instruction

PD Supports Student-Centered Instruction Composite

Prior Achievement*

School Size*

PD Supports Student-Centered Instruction Composite

Community Type*

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Discussion (10 minutes)

1. How is what you are seeing in your work similar and/or different to what is seen at the national level?
2. What insights do you have about effective methods/strategies to address inequitable distribution of resources in the context in which you work?
3. What have you seen in your work that might explain some of these national results?
https://bit.ly/2U2R9m3

Supportiveness of Context for Science Instruction

NSSME+ collected data on contextual factors including:

- Resources for science instruction
- Science enrichment opportunities
- Students and teachers
- Policies

Median School Spending Per Pupil for Science

Median School Spending Per Pupil for Science

Equity Analysis

Spending by Percent FRL

Equity Analysis

Spending by Percent FRL

Availability of Balances

Availability of Balances

Percent HU in Class*

Availability of Microscopes

Percent FRL in School

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Availability of Probes for Collecting

 Data

Adequacy of Resources

Several survey items were combined into a composite variable titled Adequacy of Resources:

- Instructional technology
- Consumable supplies
- Equipment
- Facilities

Adequacy of Resources-Composite

Prior Achievement*

Percent HU in Class*

Adequacy of Resources-Composite

Percent FRL in School*

Extent to Which Lack of Resources Is Problematic-Composite

Survey items include:

- Lack of science facilities
- Inadequate funds for purchasing science equipment and supplies
- Lack of science textbooks/modules
- Poor quality science textbooks/modules
- Inadequate materials for differentiating science instruction

Lack of Resources Is ProblematicComposite

School-Based Programs to Enhance Interest or Achievement

After-school help in science and/or engineering

- More likely in high \%FRL schools

After-school enrichment programs in science and/or engineering

- More likely in largest schools

Science clubs

- More likely in largest schools

Engineering clubs

- More likely in low \%FRL schools and in largest schools

Extent to Which Student Issues Are

 Problematic-Composite
Survey items include:

- Low student interest in science
- Low student prior knowledge and skills
- High student absenteeism
- Inappropriate student behavior
- Lack of parent/guardian support and involvement
- Community resistance to the teaching of "controversial" issues in science (e.g., evolution, climate change)

Extent to Which Student Issues Are Problematic-Composite

Extent to Which Teacher Issues Are Problematic-Composite

Survey items include:

- Lack of teacher interest in science
- Inadequate teacher preparation to teach science

Extent to Which Teacher Issues Are Problematic-Composite

Extent to Which Policy Environment Promotes Effective InstructionComposite

Survey items include:

- Current state standards
- School/District pacing guides
- State/District testing/accountability policies
- Textbook/module selection policies
- Teacher evaluation policies

Teacher Opinion of Policy Environment Support-Composite

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Teacher Opinion of Policy Environment Support-Composite

Discussion (10 minutes)

1. How is what you are seeing in your work similar and/or different to what is seen at the national level?
2. What insights do you have about effective methods/strategies to address inequitable distribution of resources in the context in which you work?
3. What have you seen in your work that might explain some of these national results?
https://bit.ly/2V0tmQ1

Science Instruction*

What science learning opportunities do students have in schools?

The 2018 NSSME+ collected data on:

- Time on science in elementary grades
- Course offerings in secondary schools
- Instructional objectives
- Classroom practices
- Engagement of students with science practices

Instructional Time: Elementary

Science Instructional Time: Elementary

Average Minutes per Day

Prior Achievement Level of Class

Mostly High 22
Mostly Low 22
Percent Historically Underrepresented Students in Class*
Lowest 17
Highest 23Percent of Students in School Eligible for FRL
Most Affluent 18
Least Affluent 20School Size*
Smallest 17
Largest 21
Community*
Rural 18
Suburban 19
Urban 22

Courses Offered: High School

The vast majority of high schools offer introductory courses in biology, chemistry, and physics

About two-thirds offer introductory courses in Earth science and environmental science
$2^{\text {nd }}$ year/advanced courses are less commonly offered

Schools Offering 2nd Year Biology

Community Type*

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Schools Offering 2nd Year Chemistry

Community Type*

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Schools Offering 2 ${ }^{\text {nd }}$ Year Physics

Community Type*

Average Number of $2^{\text {nd }}$ Year

 Science Courses Offered (out of 5)

Community Type*

AP Course Access (out of 7)

Community Type*

AP Course Access (out of 7)

Percent FRL*

THE NATIONAL SURVEY OF
SCIENCE \& MATHEMATICS EDUCATION

Course Enrollment

Course Enrollment

- Non-College Prep

1st Year Biology
\square 1st Year Chemistry
1st Year Physics
Advanced Courses

Female

Instructional Objectives

The 2018 NSSME+ included a set of items asking teachers about goals for their randomly selected class.

Several combined into a composite variable titled Reform-Oriented Instructional Objectives:

- Understanding science concepts
- Learning how to do science
- Learning how to do engineering
- Learning about different fields of science/engineering
- Learning about real-life applications
- Increasing students' interest in science
- Developing students' confidence that they can successfully pursue careers in science/engineering

Reform-Oriented Objectives

Percent HU in Class

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Instruction Objectives Profile

Prior Achievement*

Mostly High Mostly Low

Reform-Oriented Objectives

School Size

Instructional Activities: Weekly

Instructional Activities: Weekly

Lecture

- No differences by equity factors

Small group work

- More likely in classes of high prior achieving students

Hands-on/laboratory activities

- More likely in class of high prior achieving students and classes with low \%HU, and in most affluent schools

Read from textbook, write reflections, focus on literacy skills, and practice for standardized tests

- More likely in least affluent schools and in classes with high \%HU

Engagement in Science Practices

The 2018 NSSME+ included a series of items asking how often students were engaged in aspects of the science practices:

1. Asking questions/defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations/designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Engagement in Science Practices

Prior Achievement*

Percent HU in Class*

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Engagement in Science Practices

School Size

Engagement in Science Practices

Community Type*

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Required External Assessments (2x or more per year)

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Required External Assessments (2x or more ner year)

Percent FRL in School*

School Size

Curriculum and Pedagogy Control Composites

	Curriculum	Pedagogy
Prior Achievement Level of Class*		
Mostly High	65	90
Mostly Low		
Percent Historically Underrepresented Students in Class*	46	79
Lowest	63	87
Highest	49	79
Percent of Students in School Eligible for FRL*		
Most Affluent		56
Least Affluent	47	84
School Size*		
Smallest		79
Largest	60	88
Community*	48	83
Rural	61	87
Suburban	52	81
Urban	52	82

Discussion (10 minutes)

1. How is what you are seeing in your work similar and/or different to what is seen at the national level?
2. What insights do you have about effective methods/strategies to address inequitable distribution of resources in the context in which you work?
3. What have you seen in your work that might explain some of these national results?
https://bit.ly/2HZUvPq

www.horizon-research.com/NSSME

Current reports:

- Technical report
- Highlights report
- Compendium of Tables

Follow us on Twitter: @NSSMEatHRI \#NSSME

NSSME

Report of the 2018 NSSME+ december 2018

