NSSME

Equity in K-12 Mathematics Education: Highlights from the 2018 NSSME+

NCTM RESEARCH CONFERENCE APRIL 3, 2019

Kristen A. Malzahn Courtney L. Plumley Evelyn M. Gordon
$\frac{\text { Karizon }}{\text { RESEABCH,INc }}$

Symposium Structure

Three 15 minute talks

- Mathematics teaching contexts
- Well-prepared teachers
- Nature of instruction

Time for small and large group discussion following each talk

Conclude with final takeaways

About the 2018 NSSME+

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977
- It is the only survey specific to STEM education that provides nationally representative results

2018 NSSME+

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Topics Addressed

Program Questionnaire

- School programs \& practices
- Course offerings
- Influences on instruction
- PD offerings

Teacher Questionnaire

- Background \& preparation
- Pedagogical beliefs
- PD opportunities
- Instruction \& materials
- Influences on instruction

$$
\frac{\text { harsizon }}{\text { RESEATCH, INC. }}
$$

Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K-12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Endorsing Organizations

- American Association of Chemistry Teachers
- American Association of Physics Teachers
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- American Society for Engineering Education
- Association of State Supervisors of Mathematics
- Association for Science Teacher Education
- Council of State Science Supervisors
- Computer Science Teachers Association
- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers Association
- National Education Association
- National Science Education Leadership Association
- National Science Teachers Association

Endorsing Organizations

- American Association of Chemistry Teachers
- American Association of Physics Teachers
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- American Society for Engineering Education
- Association of State Supervisors of Mathematics
- Association for Science Teacher Education
- Council of State Science Supervisors
- Computer Science Teachers Association
- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers Association
- National Education Association
- National Science Education Leadership Association
- National Science Teachers

Association

Interpreting Results

After data collection, design weights were computed, adjusted for nonresponse, and applied to the data

Why is this important?

The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes-not characteristics of the respondents

Situating the Work

- The 2018 NSSME+ was not designed primarily as an equity study
- We are not equity experts
- However, the survey provides a rich source of data for examining K-12 mathematics education and the extent to which opportunities are equitably available

Approach

Equitable distribution with respect to:

- Mathematics teaching contexts
- Well-prepared teachers
- Nature of instruction

Factors Associated with Differences in Educational Opportunities
 Class-level Factors

- Prior achievement level of students in the class
- Percentage of students in the class from race/ethnicity groups historically underrepresented in STEM (HU)

School-level Factors

- Percentage of students in the school eligible for free or reduced-price lunch (FRL)
- School size
- School community type (rural, urban, suburban)

Correlated Factors

- Percent of students from historically underrepresented groups and percent of students eligible for free or reduced-price lunch
- Prior achievement and percent of students from historically underrepresented groups
- School size and community type

Contexts for Mathematics Instruction

Contexts for Mathematics
 Instruction

- Resources available for mathematics instruction
- School programs and practices for enhancing students' interest in mathematics
- Extent to which various issues are problematic for mathematics instruction
- Extent to which policies/people promote effective mathematics instruction

Money Spent on Mathematics Instruction

Annual school spending on:

- Consumable supplies (e.g., graph paper)
- Non-consumable supplies (e.g., calculators, protractors, manipulatives)
- Software specific to mathematics instruction (e.g., dynamic geometry software)
煦yme

Median School Spending Per Pupil for Mathematics

Overall

Median School Spending Per Pupil for Mathematics

Percent FRL in School*

School Size*

Median School Spending Per Pupil for Mathematics

Adequacy of Resources for Mathematics Instruction
 Teachers rated the adequacy of their:

- instructional technology (e.g., calculators, computers, probes/sensors)
- measurement tools (e.g., protractors, rulers)
- manipulatives (e.g., pattern blocks, algebra tiles)
- consumable supplies (e.g., graph paper, batteries)

$$
\frac{\text { harsigon }}{\text { RESEARCH, 1NC. }}
$$

Adequacy of Resources for Mathematics Instruction

Adequacy of Resources Composite

Adequacy of Resources Composite

Percent FRL in School*

School Size

$\frac{\text { harsizon }}{\text { RESEARCH, 1NC. }}$

Adequacy of Resources Composite

Community Type

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Extent to Which Lack of Resources is Problematic Composite

Examples:

- lack of equipment and supplies
- inadequate funds for purchasing supplies
- poor quality textbooks

Overall Score: 21

Extent to Which Lack of Resources is Problematic Composite

Percent FRL in School*

School Size

$\frac{\text { Ras izocrac }}{\text { R E S E A/R C H, I N C. }}$

School Programs and Practices for Enhancing Students" Interest in Mathematics

Examples:

- After-school help in mathematics (e.g., tutoring)
- Family math nights
- One or more teams participating in mathematics competitions (e.g., Math Counts)

School Programs and Practices, by FRL Status

Percent FRL in School

School Programs and Practices, by School Size

School Size

$$
\frac{\text { hasizon }}{\text { RESEATRCH, INC. }}
$$

Factors Promoting Mathematics Instruction (Teachers' Opinions)

- Extent to which stakeholders promote effective mathematics instruction
- Extent to which school support promotes effective mathematics instruction
- Extent to which the policy environment promotes effective mathematics instruction

Extent to Which Stakeholders Promote Effective Instruction Composite

Teachers rated the impacts of the following on effective mathematics instruction:

- students' prior knowledge and skills
- students' motivation, interest, and effort in mathematics
- parent/guardian expectations and involvement

Overall Score: 64

Extent to Which Stakeholders Promote Effective Instruction Composite

Extent to Which Stakeholders Promote Effective Instruction Composite

Percent FRL in School*

Extent to Which School Support and the Policy Environment Promote Effective Instruction Composites

School Support:

Overall Score: 71

- amount of time for you to plan, individually and with colleagues
- amount of time available for professional development

Policy Environment:
Overall Score: 65

- current state standards
- textbook selection policies
- teacher evaluation policies

Extent to Which School Support and the Policy Environment Promote Effective Instruction Composites

	School Support	Policy Environment
Prior Achievement		
High Prior Achieving	71	66
Low Prior Achieving	69	62
Percent HU in Class		
Low \% HU	70	67
High \% HU	71	64
Percent FRL in School	72	66
Low FRL Schools	71	65
High FRL Schools		
School Size*	70	64
Largest Schools	70	71
Smallest Schools		

Factors Affecting Mathematics Instruction at the School Level

- The school as a supportive context for mathematics instruction
- Extent to which teacher issues are problematic for mathematics instruction
- Extent to which student issues are problematic for mathematics instruction

Extent to Which Student Issues are Problematic Composite

 Examples:

 Examples:}

- low student interest in mathematics
- low student prior achievement and skills in mathematics
- inappropriate student behavior

Overall Score: 37

Extent to Which Student Issues are Problematic Composite

Percent FRL in School*

$\frac{\text { Ras izocrac }}{\text { R E S E A/R C H, I N C. }}$

Extent to Which Student Issues are Problematic Composite

Discussion

How is what you are seeing in your work similar and/or different to what is seen at the national level?

Distribution of Well-Prepared Teachers

Well-Prepared Teachers

NSSME+ collected data on teachers including:

- Teacher background and experience
- Pedagogical beliefs
- Perceptions of preparedness
- Professional development opportunities

Characteristics of the Teaching Force

	Percent of Teachers		
	Elementary	Middle	High
Sex			
Female	94	70	60
Male	6	30	40
Race/Ethnicity	89	89	91
White	7	8	5
Black or African-American	10	8	7
Hispanic or Latino	3	3	4
Asian	1	1	2
American Indian/Alaskan Native	0	1	1
Native Hawaiian/Other Pacific Islander	0		

Classes Taught by Teachers from Historically Underrepresented Groups

Prior Achievement*

Percent HU in Class*

Classes Taught by Teachers from Historically Underrepresented Groups

Classes Taught by Teachers from Historically Underrepresented Groups

Classes Taught by Novice Teachers

Classes Taught by Novice Teachers

Secondary Teachers with a Degree in Mathematics or Mathematics Education

Percent HU in School*

Pedagogical Beliefs

Traditional:

- Defining new vocabulary at the beginning of a unit
- Grouping students by ability
- Using hands-on/manipulatives to reinforce ideas
- Explaining ideas before students investigate them

Reform-oriented:

- Asking students to justify their thinking
- Having students share their thinking and reasoning
- Focusing on ideas more in-depth
- Connecting instruction to students' everyday lives

Teachers' Beliefs About Teaching and Learning Composites

Overall

Teachers' Reform-oriented Beliefs about Teaching and Learning Composite

Percent HU in Class*

Percent FRL in School*

Teachers' Traditional Beliefs about Teaching and Learning Composite

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Teacher's Perceptions of
 Preparedness

- Perceptions of preparedness to teach mathematics content
- Perceptions of pedagogical preparedness
- Perceptions of preparedness to implement instruction in the most recent unit

Perceptions of Preparedness to Teach Mathematics Content Composite

Elementary

- Number and Operation
- Early Algebra
- Geometry
- Measurement and Data representation

Secondary

- Number system
- Algebraic thinking
- Functions
- Modeling
- Geometry
- Statistics and probability
- Discrete mathematics

Overall score: 81

Overall score: 81

$$
\frac{\text { harsigon }}{\text { RESEARCH, INC. }}
$$

Perceptions of Preparedness to Teach Mathematics Content Composite

Prior Achievement*

Percent HU in School*

Perceptions of Preparedness to Teach Mathematics Content Composite

Percent FRL in School*

School Size*

Perceptions of Pedagogical
 Preparedness Composite

Examples:

- Develop students' conceptual understanding
- Develop students' abilities to do mathematics
- Use formative assessment to monitor understanding
- Differentiate instruction to meet diverse learners' needs
- Incorporate students' cultural backgrounds

Overall score: 70

Perceptions of Pedagogical Preparedness Composite

Prior Achievement
High Prior Achieving 71

Low Prior Achieving69

Percent Historically Underrepresented*
Low \% HU 68
High \% HU 71Percent of Students Eligible for FRL
Low \% FRL 71
High \% FRL 71School Size
Largest 69
Smallest 70

Perceptions of Preparedness to Implement Instruction in the Most Recent Unit
 Composite

Examples:

- Anticipate difficulties students will have with mathematical ideas
- Implement instructional materials to be used in the unit
- Monitor student understanding during the unit
- Assess student understanding at the conclusion of the unit

Overall score: 83

Perceptions of Preparedness to Implement Instruction in the Most Recent Unit Composite

Prior Achievement*

Percent HU in School*

Perceptions of Preparedness to Implement Instruction in the Most Recent Unit Composite

Percent FRL in School*

School Size

Professional Development Experiences

- Amount of mathematics-focused professional development
- Nature of professional development (composite)
- Emphasis of professional development (composite)

Amount of Professional Development

Hours of Mathematics PD in Last 3 Years, Overall

Classes Taught by Teachers with More Than 35 hours of Math PD in Last Three Years

	Percent of Classes
Prior Achievement	
High Prior Achieving	36
Low Prior Achieving	34
Percent Historically Underrepresented*	
Low \% HU	25
High \% HU	33
Percent of Students Eligible for FRL	
Low \% FRL	26
High \% FRL	32
School Size	29
Largest	26
Smallest	

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Extent PD Aligns with Elements of Effective PD Composite
 Examples:

- Worked closely with other teachers from their school
- Had opportunities to engage in mathematical investigations
- Had opportunities to apply what they learned to their class room and then come back and talk about it
- Had opportunities to examine classroom artifacts

Overall score: 58

$$
\frac{\text { harsigon }}{\text { RESEARCH, INC. }}
$$

Extent PD Supports StudentCentered Instruction Composite

Examples:

- Deepening understanding of how mathematics is done
- Learning how to use hands-on/manipulatives
- Learning about difficulties students may have with mathematical ideas
- Monitoring student understanding
- Differentiating to meet diverse learners' needs

Overall score: 57

Professional Development Composites

	Alignment with Elements of Effective PD	Supports StudentCentered Instruction
Prior Achievement*		
High Prior Achieving	56	55
Low Prior Achieving	61	60
Percent HU in Class		
Low \% HU	58	59
High \% HU	61	62
Percent FRL in School		
Low FRL Schools	57	58
High FRL Schools	60	62
School Size		
Largest Schools	59	57
Smallest Schools	55	61
NSSME	LSUuVE OF	$\frac{\text { harigon }}{\text { RESEARCH, INC }}$

Professional Development Offered at School, by FRL Status

Percent FRL in School*

Professional Development Offered at School, by School Size

School Size*

Professional Development Offered at School, by Community Type

Community Type*

Discussion

What insights do you have about methods/ strategies to address inequitable distribution of well-prepared teachers in your work context?

Nature of Mathematics Instruction

Nature of Mathematics Instruction

- Instructional time
- Course offerings and enrollment
- Frequency of external testing
- Emphasis on reform-oriented instructional objectives
- Student engagement with mathematical practices
- Teachers' perceived control over curriculum and pedagogy

Instructional Time: Elementary

Minutes Per Day on Elementary Mathematics

Percent HU in Class*

Minutes Per Day on Elementary Mathematics

Percent FRL in School

School Size

$\frac{\text { Ras izocrac }}{\text { R E S E A/R C H, I N C. }}$

Course Offerings and Enrollment

- $8^{\text {th }}$ grade students completing Algebra 1, Geometry
- High schools offering formal advanced mathematics courses (e.g., Algebra 2, precalculus, AP Calculus)
- Availability of AP courses
- Enrollment in high school mathematics courses

Middle School Students Completing Algebra 1 and Geometry

- About $3 / 4$ of middle schools have at least some students completing Algebra 1 prior to $9^{\text {th }}$ grade
- About $1 / 4$ of middle schools have students completing Geometry

Average Percentage of $8^{\text {th }}$ Graders Completing Algebra 1 \& Geometry

Percent FRL in School

$$
\frac{\text { harsizon }}{\text { RESEATRCH, INC. }}
$$

Average Percentage of $8^{\text {th }}$ Graders Completing Algebra 1 \& Geometry

School Size

$$
\frac{\text { harizon }}{\text { RESEATCH, INC. }}
$$

Average Percentage of $8^{\text {th }}$ Graders Completing Algebra 1 \& Geometry

Community Type

Suburban Schools
Urban Schools
■ural Schools

$$
\frac{\text { Ras ingorl }}{\text { R E S EAM CH, I N C. }}
$$

High Schools Offering Various Mathematics Courses

	Percent of Schools
Non-college prep (e.g., Remedial Math, General Math, Consumer Math)	79
Formal/College prep level 1 (e.g., Algebra 1, Integrated Math 1)	98
Formal/College prep level 2 (e.g., Geometry, Integrated Math ?)	93
Formal/College prep level 3 (e.g., Algebra 2, Algebra and Trigonometry)	91
Formal/College prep level 4 (e.g., Pre-Calculus, Algebra 3) Courses that might qualify for college credit (e.g., AP Calculus,	90
AP Statistics)	72

High Schools Offering Formal Advanced Mathematics Courses

Average Number of AP Mathematics Courses Offered

Percent FRL in School*

School Size*

$\frac{\text { harizon }}{\text { RESEATRCH, INC. }}$

Average Number of AP Mathematics Courses Offered

Community Type*

Average Percentages of HU Students in High School Mathematics Courses

	Percent HU
Non-college prep (e.g., Remedial Math, General Math, Consumer Math)	53
Formal/College prep level 1 (e.g., Algebra 1, Integrated Math 1)	38
Formal/College prep level 2 (e.g., Geometry, Integrated Math 2)	39
Formal/College prep level 3 (e.g., Algebra 2, Algebra and Trigonometry)	37
Formal/College prep level 4 (e.g., Pre-Calculus, Algebra 3)	33
Courses that might qualify for college credit (e.g., AP Calculus, AP Statistics)	22

$$
\frac{\text { har iycorl }}{\text { R E S E A/R C H, I N C. }}
$$

Frequency of External Mathematics Testing

	Percent of Classes		
	Elementary	Middle	High
Never	9	1	20
Once a year	9	12	25
Twice a year	9	11	22
Three or four times a year	48	43	24
Five or more times a year	25	33	10

Two or More External Mathematics Assessments Per Year

Two or More External Mathematics Assessments Per Year

Reform-Oriented Instructional

Objectives Composite

Items in composite:

- Understanding mathematical ideas
- Learning how to do mathematics
- Learning about real-life applications of mathematics
- Increasing students' interest in mathematics
- Developing students' confidence that they can successfully pursue careers in mathematics

Overall Score: 78

Reform-Oriented Objectives Composite

Prior Achievement*

Percent HU in Class

Reform-Oriented Objectives Composite

Engagement in Standards for Mathematical Practice

The 2018 NSSME+ included a series of items asking how often students were engaged in aspects of the mathematical practices:

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
3. Construct viable arguments/critique reasoning of others
4. Model with mathematics
5. Use appropriate tools strategically
6. Attend to precision
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning

Overall Score: 73

Engaging Students in Practices of Mathematics Composite

Mathematics Practices Profile

Prior Achievement

Teachers' Perceptions of Control

Curriculum Control:

- Determining course goals and objectives
- Selecting curriculum materials
- Selecting content, topics, and skills to be taught
- Selecting the sequence in which topics are covered
Pedagogy Control:
Overall Score: 85
- Selecting teaching techniques
- Determining the amount of homework to be assigned
- Choosing criteria for grading student performance

Curriculum Control and Pedagogy Control Composites

	Curriculum Control	Pedagogy Control
Prior Achievement*		
High Prior Achieving	59	88
Low Prior Achieving	45	81
Percent HU in Class*		
Low \% HU	56	85
High \% HU	42	79
Percent FRL in School*	51	82
Low FRL Schools	43	80
High FRL Schools		
School Size*	43	82
Largest Schools	61	84
Smallest Schools		

Discussion

What have you seen in your work that might explain some of these national results?

Closing Thoughts

- Limitations (as with all research studies)
- NSSME+ provides an opportunity to examine some questions of access at national scale
- Interesting paradoxes
- Some hopeful findings
- Also evidence that historic inequities persist
- What other questions would you ask using this data set?

www.horizon-research.com/NSSME

Current reports:

- Technical report
- Highlights report
- Compendium of Tables

Follow us on Twitter:
@NSSMEatHRI \#NSSME

NSSME

Report of the 2018 NSSME+ DECEMBER 2018

Eric R. Banilower P. Sean Smith

Kristen A. Malzahn Courtney L. Plumley Evelyn M. Gordon Meredith L. Hayes

$$
\frac{\text { harizon }}{\text { RESEABCH.INC. }}
$$

