Obstacles to and Progress Toward the Vision of the NGSS

NARST

APRIL 2, 2019

Brief History of the NGSS

- July 2011—NRC publishes Framework for K-12 Science Education
- 2011-13-Achieve coordinates development of the Next Generation Science Standards (NGSS), based on the Framework and led by 26 "lead state partners"
- April 2013—Achieve releases the NGSS for adoption
- State adoption*
- 2013-14: 15 states and DC (early adopters)
- 2015-17: 24 states (late adopters)
- 11 states had not adopted as of August 2018

Geography of Adoption

NGSS and the NSSME

Framework Published NGSS Released

About the 2018 NSSME+

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977 .
- It is the only survey specific to STEM education that provides nationally representative results.

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Topics Addressed

Six different survey instruments

- Characteristics of the science/mathematics/ computer science teaching force:
- demographics
- preparation for teaching
- beliefs about teaching and learning
- perceptions of preparedness
- Instructional practices
- Factors that shape teachers' decisions about content and pedagogy
- Use of instructional materials
- Opportunities teachers have for professional growth
- How instructional resources are distributed

Who's In the Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K-12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Endorsing Organizations

- American Association of Chemistry Teachers
- American Association of Physics Teachers
- American Federation of Teachers
- Association of Mathematics Teacher Educators
- American Society for Engineering Education
- Association of State Supervisors of Mathematics
- Association for Science Teacher Education
- Council of State Science Supervisors
- Computer Science Teachers Association
- National Association of Biology Teachers
- National Association of Elementary School Principals
- National Association of Secondary School Principals
- National Council of Supervisors of Mathematics
- National Council of Teachers of Mathematics
- National Earth Science Teachers Association
- National Education Association
- National Science Education Leadership Association
- National Science Teachers Association

Interpreting Results

After data collection, design weights were computed, adjusted for nonresponse, and applied to the data.

Why should you care?

The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes-not characteristics of the respondents.

Looking for Obstacles and Progress

To fully realize the type of instruction envisioned by the NGSS requires alignment of many aspects of the education system:

- Teacher preparation (pre-service and in-service)
- Teacher knowledge, skills, and beliefs
- Classroom Resources
- Other policies

System Factors
 Teacher
 Preparation Factors
 Teacher Factors Classroom Factors

Teacher Preparation Factors

Teacher Factors Classroom Factors

System Factors

Teacher Preparation Factors

Teacher Factors Classroom Factors

Session Overview

Share data related to NGSS implementation:

- Nature of science instruction
- Science teachers' background and beliefs
- Professional development experiences
- Resources for science instruction

As appropriate, data are disaggregated by:

- Year (2012 vs. 2018)
- Grade range
- Adoption status (non, late, early)

Time for Q\&A after each section

Heidi Schweingruber will offer her perspective on the findings at the end of the session.

$$
\frac{\text { harsizon }}{\text { RESEARCH, INC. }}
$$

Science Instruction*

Are students experiencing the kind of science instruction as envisioned in the NGSS?

The 2018 NSSME+ collected data on:

- Instructional objectives
- Classroom practices
- Engagement of students with science practices

Objectives Receiving a Heavy Emphasis

\square Elementary \square Middle \square High

$$
\frac{\text { Rar izorl }}{\text { R E S EAR CH, INC. }}
$$

Heavy Emphasis on Learning Science Vocabulary/Facts

Science Classes With Any Emphasis on Learning How To Do Engineering

Heavy Emphasis on Learning How To Do Science

Elementary Classes Receiving Science Instruction All/Most Days

Elementary Classes Receiving Science Instruction All/Most Days

Instructional Time: Elementary

Minutes Per day on Science: Elementary

Instructional Activities (Weekly)

Teacher Explains Ideas (Weekly)

Hands-On Activities (Weekly)

Science Classes in Which Teachers Report Incorporating Engineering Into Science Instruction "At All"

Engagement in Science Practices

The 2018 NSSME+ included a series of items asking how often students were engaged in aspects of the science practices:

1. Asking questions/defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations/designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Conducting Investigations and Analyzing Data (Weekly)

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Students tend to not be engaged very often in aspects of science related to evaluating the strengths/limitations of evidence and the practice of argumentation

Evaluating Evidence and Arguing (Weekly)

Engaging Students in the Practices of Science Composite

Instruction Takeaways

Instructional time for science at the elementary is still relatively Iow

Heavy emphasis on developing conceptual understanding, but not on how science is done, or how knowledge is generated and revised

Students conduct investigations and analyze data fairly often, but not asked to think critically nearly as often

Only a few differences by adoption status

Characteristics of the Science Teaching Force

- Teacher beliefs about effective science instruction
- Teacher background (degrees \& coursework)
- Perceptions of preparedness

Teachers Agreeing With ReformOriented Beliefs About Instruction

Teachers Agreeing With Traditional Beliefs About Instruction

High School Teachers

At the beginning of instruction on a science idea, students should be provided with definitions for new scientific vocabulary that will be used.

Degree in Science/Engineering/ Science Education

Elementary Teachers' College Coursework: Earth, Life, Physical Sciences

Percent of Elementary Teachers

No courses in these areas

Course in 1 of 3 areas
\square Courses in 2 of 3 areas

Courses in all 3 areas

Middle School Teachers' College Coursework: Chemistry, Earth Science, Life Science, Physics

 Percent of Middle Grades Teachers

 Percent of Middle Grades Teachers}

No courses in these areas

Courses in 1 of 4 areas

Courses in 2 of 4 areas

Courses in 3 of the 4 areas

Courses in all 4 areas

Middle School Science Teachers' Degrees, by Course Taught

High School Teachers' College Coursework, by Course Taught

100\%

High School Science Teachers With Degree in Subject

Elementary Teachers' Considering Themselves Very Well Prepared to Teach Each Subject

■ 2012 ■ 2018

Teachers' Perceptions of Content Prenaredness

Teachers' Perceptions of Pedagogical Preparedness

Science Teachers Considering Themselves Very Well Prepared for Each of a Number of Tasks

Science Teachers Considering Themselves Very Well Prepared for Each of a Number of Tasks

Elementary Teachers' Perceptions of Preparedness to Teach Engineering

Secondary Science Teachers' Perceptions of Preparedness to Teach Engineering Composite

High School Science Teachers' Perceptions of Preparedness to Teach Engineering

Teaching Force Takeaways

- The majority of teachers hold many beliefs that are aligned with what is known about effective science instruction, though these beliefs may not always translate into practice.
- Many teachers have had limited coursework in the content they are expected to teach.
- Teachers' perceptions of preparedness tend to increase with increasing grade range.
- Some evidence of movement in the right direction since the adoption of NGSS, but many obstacles still remain.

Professional Development

- Participation in science professional development in the last three years
- Characteristics of science professional development
- Emphasis of science professional development

Participation in Science PD in Last Three Years

No Science PD in Last Three Years

More Than 35 Hours of Science PD in Last Three Years

Participation in Science PD in Last Three Years - Elementary

Alignment With Elements of Effective PD

Alignment With Elements of Effective PD

Characteristics of Effective PD in Last Three Years

Heavy Emphasis of PD in Last Three Years

Early \quad Late \quad Non

Heavy Emphasis of PD in Last Three Years - Early Adopters

$\square 2012 \square 2018$

Science PD Offered Locally in Last Three Years

Science PD Offered Locally in Last Three Years

Science Workshops Offered Locally in Last Three Years

$$
\frac{\text { har ingorl }}{\text { RE S EATR CH, INC. }}
$$

Influence of State Science

Standards

The school/district/diocese organizes science professional development based on state standards.

Professional Development

Participation in science focused PD is uneven

- elementary vs. middle and high
- NGSS adopters vs. non adopters

Quality of science focused PD is improving, but focus of PD varies

- NGSS adopters vs. non adopters

Teachers are generally not getting the PD opportunities they need to implement NGSS

Resources for Instruction

- Instructional materials
- Other material resources

Instructional Materials

For most science classes, districts designate instructional materials to be used:

Designated Instructional Materials-All Grades

Designated Instructional Materials-Flementary

■ Early \quad Late \quad Non

$$
\frac{\text { Ras izorl }}{\text { R E S E A K C H, INC. }}
$$

Designated Instructional Materials-Middle

Designated Instructional Materials-High

Instructional Materials

For most classes, the most recent unit was based on a commercially published textbook or a material developed by the state/district:

Science Classes Using Textbooks Published in 2009 or Earlier

Ways Teachers Used Their Textbook in Most Recent Unit

I used these materials to guide the structure and content emphasis of the unit.

Ways Teachers Used Their Textbook in Most Recent Unit

I incorporated activities (e.g., problems, investigations, readings) from other sources to supplement what these materials were lacking.

Reasons Why Science Materials Are Supplemented in Science Classes

My pacing guide indicated that I should use supplemental activities.

Ways Elementary Teachers Used Their Textbook in Most Recent Unit

I picked what was important and skipped the rest.

Science Classes Basing Instruction on Various Instructional Resources at Least Once a Week

Other Material Resources

Adequacy of Resources for Science Instruction in Science Classes

Median School Spending Per Pupil for Science

Median School Spending Per Pupil

 for Science

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Equity Analysis

Spending by percentage of students eligible for free or reduced-price lunch in school

Equity Analysis

Spending by percentage of students eligible for free or reduced-price lunch in school

Resources for Instruction Takeaways

Commercially published materials heavily influence instruction, but most classes in NGSS states are using pre-NGSS materials.

The lack of NGSS-aligned materials is a formidable obstacle to implementation.

Schools appear to be only moderately well resourced for NGSS implementation, and less affluent schools are particularly underresourced.

www-horizon-research.com/NSSME

Current reports:

- Technical report
- Highlights report
- Compendium of Tables

Follow us on Twitter: @NSSMEatHRI \#NSSME

