NSSME

 Teaching in the US: Current Status, Trends over Time, and Factors Affecting InstructionMARCH 16, 2020

Eric R. Banilower
P. Sean Smith

Peggy J. Trygstad
Laura M. Craven
$\frac{\text { hazizon }}{\text { RESEARCH, INC. }}$

Session Overview

- About the 2018 NSSME+
- Changes in the K-12 science education system between 2012 and 2018
- How novice science teachers compare to veterans
- Factors associated with NGSS-aligned instruction
- Discussion

About the 2018 NSSME +

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977.
- It is the only survey specific to STEM education that provides nationally representative results.

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Topics Addressed

Six different survey instruments

- Characteristics of the science/mathematics/ computer science teaching force:
- demographics
- preparation for teaching
- beliefs about teaching and learning
- perceptions of preparedness
- Instructional practices
- Factors that shape teachers' decisions about content and pedagogy
- Use of instructional materials
- Opportunities teachers have for professional growth
- How instructional resources are distributed

Who's In the Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K-12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Interpreting Results

- After data collection, design weights were computed, adjusted for nonresponse, and applied to the data.
- The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes-not characteristics of the respondents.

www.horizon-research.com/NSSME

Several reports and other products are available on our website, including:

- Technical report
- Highlights report
- Compendium of Tables
- Trends report
- Novice teacher report

Follow us on Twitter: @NSSMEatHRI \#NSSME

Report of the 2018 NSSME+ december 2018

Eric R. Banilower P. Sean Smith

Kristen A. Malzahn
Courtney L. Plumley Evelyn M. Gordon Meredith L. Hayes
$\frac{\text { harizon }}{\text { RESEABCH, INC. }}$

NSSME

Trends in
 Sec ondary

Science
Instruction from 2012 to 2018

Teacher Characteristics

The 2018 NSSME+ collected data on:

- Gender
- Race/ethnicity
- Age
- Years of teaching experience
- Content background (courses and degrees)
- Preparedness
- Beliefs

Note: In the charts that follow, an asterisk indicates a significant difference ($p<0.05$) in the contrast of interest.

$$
\frac{\text { harizon }}{\text { RESEATRCH, INC. }}
$$

Gender and Race/Ethnicity

Between 2012 and 2018, the science teaching force did not change in terms of gender or race/ethnicity.

Female Teachers

Race/Ethnicity of Middle School Science Teachers

Race/Ethnicity of High School Science Teachers

Degrees Earned

Both middle and high school science teachers were more likely in 2018 than in 2012 to have a degree in sciencelengineering or science education.

In 2018, middle and high school life sciencel biology teachers were more likely to have a degree in their field than they were in 2012.

Likewise, high school chemistry teachers were more likely to have a degree in their field than in 2012.

NSSME

Degrees Earned by Middle School Science Teachers

Degrees Earned by High School Science Teachers

Middle Grades Science Teachers With a Degree in Field

High School Science Teachers With a Degree in Field

Professional Development

Between 2012 and 2018:

- there was no change in the amount of PD secondary science teachers participated in.
- teachers became less likely to participate in study groups and coaching.
- there was no change in the percentage of schools offering local, science-focused PD.

Amount of PD in Previous Three Years: Middle School Science Teachers

Amount of PD in Previous Three Years: High School Science Teachers

Types of PD in Previous Three Years: Middlle School Science Teachers

$2012 \square 2018$

Types of PD in Previous Three Years: High School Science Teachers

$2012 \square 2018$

PD Workshops Offered Locally in Previous Three Years

Science Courses

In 2018, schools were more likely than in 2012 to offer non-college prep courses and advanced courses in several science disciplines.

High schools were much more likely in 2018 to offer engineering courses, including non-college prep, college prep, and advanced courses.

High Schools Offering Physics Courses

$■ 2012$ ■ 2018

High Schools Offering Coordinated/ Integrated/Interdisciplinary

 Science Courses
$■ 2012 \square 2018$

High Schools Offering Environmental Science/Ecology Courses

$\square 2012 \square 2018$

High Schools Offering Earth/Space Science Courses

$\square 2012 \square 2018$

High Schools Offering Engineering Courses

$■ 2012 \square 2018$

Access to AP and Special Opportunities

With the exception of access to AP Environmental Science (which increased), student access to AP courses did not change from 2012 to 2018.

Several special opportunities to take science/ engineering courses (e.g., dual enrollment, courses by telecommunications) became much more common in 2018.

Access to AP Courses

Science Programs Offered at High Schools

$$
\frac{\text { Rar ing }}{\text { R E S EAM C H, INC. }}
$$

Science Instruction

Between 2012 and 2018, there was little change in science class activities in middle and high schools, with some exceptions, including:

- The likelihood of explaining a science idea to the whole class decreased.
- The likelihood of students working in small groups increased.

Middle School Class Activities: All or Almost All Lessons

$$
\frac{\text { harsizon }}{\text { RESEARCH.1NC }}
$$

High School Class Activities: All or Almost All Lessons

Adequacy of Resources

In 2018, middle school science teachers were more likely than in 2012 to view some resources as adequate:

- Equipment (e.g., thermometers, microscopes, beakers, Bunsen burners)
- Instructional technology (e.g., calculators, computers, probes/sensors)

In 2018, high school science teachers were more likely than in 2012 to view some resources as adequate:

- Equipment
- Consumable supplies
- Instructional technology

Classes in Which Teachers Feel Various Resources are Adequate: Middle School

Classes in Which Teachers Feel Various Resources are Adequate: High School

Conclusions

The 2018 NSSME+ data point to several positive trends in secondary science, including:

- Increases in course taking and degrees earned among teachers
- Increased opportunities for students to take science courses by special means
- Less lecture and more group work
- More resources

The data also point to continued problem areas, including:

- Lack of diversity in teaching force
- Inadequate professional learning opportunities and participation

Novice Secondary

 Science Teachers
Teacher Characteristics

The 2018 NSSME+ collected data on:

- Sex
- Race/ethnicity
- Age
- School Contexts
- Content background (certification, degrees and coursework)
- Beliefs
- Preparedness

Characteristics of the Middle School Teaching Force

	Percent of Teachers	
Sex	Novice	Veteran
Female		
Male	68	73
Race/Ethnicity		25
White	89	92
Black or African-American	11	7
Hispanic or Latino	8	6
Asian	2	1
American Indian/Alaskan Native	2	2
Native Hawaiian/Other Pacific Islander	1	0

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Characteristics of the Middle School Teaching Force

Teacher Age*

Middle School Contexts

	Percent of Teachers	
	Novice	Veteran
School Type		
Catholic	8	6
Non-Catholic Private	5	7
Public	88	87
Community Type		
Rural	31	24
Suburban	47	49
Urban	23	27

Characteristics of the High School Teaching Force

	Percent of Teachers	
Sex	Novice	Veteran
Female		
Male	58	56
Race/Ethnicity	42	44
White	87	93
Black or African-American	6	4
Hispanic or Latino	11	5
Asian	7	4
American Indian/Alaskan Native	2	2
Native Hawaiian/Other Pacific Islander	0	0

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

Characteristics of the High School Teaching Force

Teacher Age*

High School Contexts

	Percent of Teachers	
	Novice	Veteran
School Type	6	9
Catholic	7	6
Non-Catholic Private	86	85
Public		
Community Type		
Rural	22	26
Suburban	42	49
Urban	36	26

Middle School Teacher Certification

Paths to Certification*

High School Teacher Certification

Paths to Certification*

Middle School Teacher Degrees

High School Teacher Degrees

Middle School Substantial Background

Novice Veteran

High School Substantial Background

\square Novice ■ Veteran

Middle School Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

\square Novice ■ Veteran

Middle School Teachers Agreeing With Various Traditional Teaching Beliefs

\square Novice ■ Veteran

Middle School Teacher Beliefs

 Composites About Teaching and Learniing

High School Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

\square Novice ■ Veteran

High School Teachers Agreeing With Various Traditional Teaching Beliefs

\square Novice ■ Veteran

High School Teacher Beliefs Composites About Teaching and Learning

Sec ondary Teacher Perceptions of Content Preparedness Composites

Middle School Teachers Feeling Very Well Prepared to Teach Chemistry Topics

Novice ■ Veteran

Middle School Teachers Feeling Very Well Prepared for Instructional Tasks

\square Novice ■ Veteran

High School Teachers Feeling Very Well Prepared for Instructional Tasks

\square Novice ■ Veteran

Middle School Teachers Feeling Very Well Prepared to Monitor and Address Student Understanding in Most Recent Unit

\square Novice ■ Veteran

High School Teachers Feeling Very Well Prepared to Monitor and Address Student Understanding in Most Recent Unit

\square Novice ■ Veteran

Science Instruction

Middle School Classes with Heavy Emphasis on Instructional Objectives

\square Novice ■ Veteran

Middle School Classes with Heavy Emphasis on Instructional Objectives

\square Novice ■ Veteran

High School Classes with Heavy Emphasis on Instructional Objectives

\square Novice ■ Veteran

High School Classes with Heavy Emphasis on Instructional Objectives

\square Novice ■ Veteran

Secondary Teachers Incorporating Engineering into Science Instruction

Support for Novice Sec ondary Teachers

Sec ondary Teacher Participation in Science PD in Previous Three Years

Middle*

High

More than 35 hours of Science PD in Previous Three Years

Middle*

High*

Duration of Formal Induction Programs

Supports Provided as Part of Formal Induction Programs

Takeaways

Some key differences between novices and

 veterans:- Content preparedness/background
- Pedagogical preparedness
- Instructional beliefs

Many commonalities which suggest room for professional growth

- PD data suggest teachers are not getting the sustained support they need to "mature" as professionals throughout their teaching careers.

Takeaways

Given the large percentage of novice teachers in schools that offer induction programs, perhaps it is possible to leverage induction program supports:

- School-based mentors might devote time to helping novices increase their science content knowledge or diversify their science teaching practices
- School leaders may strategically choose teachers for novices to observe when they are given release time to do so

NSSME

Factors That

Predict the Extent to Which
Secondary
Teachers' Engage Students in the Science Practices

$\frac{\text { harizon }}{\text { RESEABCH.INc }}$

Analytic Approach

The 2018 NSSME+ collected data about the nature of instruction in secondary science classes

Study also collected tons of data about teachers, schools, and instructional resources

This analysis looked at school, class, and teacher characteristics that are associated with instructional practices

Outcomes

Composite variables measuring:

1. Reform-oriented instructional objectives
2. Extent instruction engages students with the practices of science

Reform-Oriented Instructional

Objectives

How much emphasis each would receive over the

 entire course:1. Understanding science concepts
2. Learning about different fields of science/engineering
3. Learning how to do science (develop scientific questions; design and conduct investigations; analyze data; develop models, explanations, and scientific arguments)
4. Learning how to do engineering (e.g., identify criteria and constraint, design solutions, optimize solutions)
5. Learning about real-life applications of science/engineering
6. Increasing students' interest in science/engineering
7. Developing students' confidence that they can successfully pursue careers in science/engineering

Engagement in Science Practices

How often students are engaged in aspects of the science practices:

1. Asking questions/defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations/designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Independent Variables

Schools

- School size
- Community type
- Public vs. private school
- Spending per pupil
- Extent factors are problematic
- Block scheduling (HS only)

Teachers

- Years of K-12 science teaching experience
- Science-related degree
- Perceptions of preparedness
- Teaching beliefs
- Science-related job before teaching
- Amount of science PD
- Race/sex

Classes

- Subject matter
- Course level (HS only)
- Prior achievement level of students
- Class size
- Percent of students in class from race/ethnicity groups historically underrepresented in STEM
- Curriculum control
- Pedagogy control
- Number of instructional materials used often
- Adequacy of resources
- Extent effective instruction is promoted

Reform-Oriented Objectives Receiving a Heavy Emphasis

MiddleHigh

Reform-Oriented Instructional Objectives Composite: Middle School

Reform-Oriented Instructional Objectives Composite: High School

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Conducting Investigations and Analyzing Data: Weekly

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Students tend to not be engaged very often in aspects of science related to evaluating the strengths/limitations of evidence and the practice of argumentation

Evaluating Evidence and Arguing: Weekly

Engaging Students in the Practices Science Composite: Middle School

Engaging Students in the Practices Science Composite: High School

School Independent Variables

School Independent Variables

	Middle Schools	High Schools
Average Number of Students	460	687
Average Percent FRL	$\$ 7.22$	$\$ 11.62$

School Independent Variables

	Percent of Middle Schools	Percent of High Schools
Community Type		
Rural	28	37
Suburban	42	37
Urban	30	26
School Type	73	
Public	27	81
Private		19
Schedule Type	n / a	
Block	n / a	33
Traditional		67

School Mean Scores for Factors Affecting Instruction Composites

Teacher Independent Variables

K-12 Science Teaching Experience

Perceptions of Preparedness: Very Well Prepared to Teach Earth/Space Science Topics

\square Middle \quad High

Perceptions of Preparedness: Very Well Prepared to Teach Biology/Life Science Topics

Perceptions of Preparedness: Very Well Prepared to Teach Chemistry Topics

- Middle ■ High

Perceptions of Preparedness: Very Well Prepared to Teach Physics Topics

Perceptions of Preparedness: Very Well Prepared to Teach Environmental Science

Environmental and resource issues

Perceptions of Preparedness: Very Well Prepared to Use StudentCentered Pedagogies

Perceptions of Preparedness: Very Well Prepared to Use StudentCentered Pedagogies

Perceptions of Preparedness: Very Well Prepared for Various Tasks in the Most Recent Unit

Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

Middle - High

Teachers Agreeing With Various Traditional Teaching Beliefs

\square Middle \quad High

Science Background

Hours of Science PD in the Previous 3 Years

Teacher Characteristics

Teacher Race/Ethnicity

- American Indian/Alaskan Native

■ Black or African-American

- Asian
- Hispanic or Latino

Native Hawaiian or Other Pacific Islander \square White

Class Independent Variables

Middle School Course Types

High School Course Types

High School Course Levels

Prior Achievement Grouping in Science Classes

Class Size

Average Percentage of Historically Underrepresented Students in Class

Classes in Which Teachers Feel Strong Control Over Curric ulum

Classes in Which Teachers Feel Strong Control Over Pedagogy

Number of Types of Instructional Materials Used Often

$$
\frac{\text { harizon }}{\text { RESEARCH, 1NC. }}
$$

Classes in Which Teachers Feel Various Resources are Adequate

Class Mean Scores for Factors Promoting Effective IInstruction Composites

Middle School Path Model

High School Path Model

Total Effects on Student Engagement in Science Practices

	Middle	High
Perceptions of Preparedness	0.370	0.341
Reform-Oriented Teaching Beliefs	0.129	0.188
Amount of Science PD in Previous 3 Years		
Less than 35 hours	---	0.157
35 or more hours	---	0.184
Reform-Oriented Instructional Objectives	0.390	0.405
Curriculum Control	---	0.180
Pedagogy Control	-0.337	-0.121
Number of instructional materials used often (vs. none)		
One	0.090	-0.254
Two or three	0.101	-0.286
Four or more	0.198	-0.064
Adequacy of Resources for Instruction	-0.229	---
Extent Effective Instruction is Promoted	0.380	---

THE NATIONAL SURVEY OF SCIENCE \& MATHEMATICS EDUCATION

