

Secondary Science Teaching in the US: Current Status, Trends over Time, and Factors Affecting Instruction

MARCH 16, 2020

Eric R. Banilower P. Sean Smith Peggy J. Trygstad Laura M. Craven

horizon RESEARCH, II

Session Overview

- About the 2018 NSSME+
- Changes in the K-12 science education system between 2012 and 2018
- How novice science teachers compare to veterans
- Factors associated with NGSS-aligned instruction
- Discussion

About the 2018 NSSME+

- The 2018 NSSME+ is the sixth in a series of surveys dating back to 1977.
- It is the only survey specific to STEM education that provides nationally representative results.

The 2018 NSSME+, and this presentation, is based upon work supported by the National Science Foundation under Grant No. DGE-1642413. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Topics Addressed

Six different survey instruments

- Characteristics of the science/mathematics/ computer science teaching force:
 - demographics
 - preparation for teaching
 - beliefs about teaching and learning
 - perceptions of preparedness
- Instructional practices
- Factors that shape teachers' decisions about content and pedagogy
- Use of instructional materials
- Opportunities teachers have for professional growth
- How instructional resources are distributed

Who's In the Sample

Two-stage random sample that targeted:

- 2,000 schools (public and private)
- Over 10,000 K–12 teachers

Very good response rate:

- 1,273 schools participated
- 86 percent of program representatives
- 78 percent of sampled teachers

Interpreting Results

- After data collection, design weights were computed, adjusted for nonresponse, and applied to the data.
- The sampling and weighting processes mean that the results are national estimates of schools, teachers, and classes—not characteristics of the respondents.

www.horizon-research.com/NSSME

Several reports and other products are available on our website, including:

- Technical report
- Highlights report
- Compendium of Tables
- Trends report
- Novice teacher report

Follow us on Twitter: @NSSMEatHRI #NSSME

NSSME SCI

Trends in Secondary Science Instruction from 2012 to 2018

harizon RESEARCH, INC INC.

Teacher Characteristics

The 2018 NSSME+ collected data on:

- Gender
- Race/ethnicity
- Age
- Years of teaching experience
- Content background (courses and degrees)
- Preparedness
- Beliefs

Note: In the charts that follow, an asterisk indicates a significant difference (p < 0.05) in the contrast of interest.

Gender and Race/Ethnicity

Between 2012 and 2018, the science teaching force did not change in terms of gender or race/ethnicity.

Female Teachers 100 80 71 70 **Percent of Teachers** 57 60 54 40 20 0 Middle High 2012 2018 horizon **NSSME** THE NATIONAL SURVEY OF , I N C . CS EDUCATION R E S СН

Race/Ethnicity of Middle School Science Teachers

THE NATIONAL SURVEY OF CS EDUCATION

Race/Ethnicity of <u>High School</u> Science Teachers

Both middle and high school science teachers were more likely in 2018 than in 2012 to have a degree in science/engineering or science education.

In 2018, middle and high school life science/ biology teachers were more likely to have a degree in their field than they were in 2012.

Likewise, high school chemistry teachers were more likely to have a degree in their field than in 2012.

Degrees Earned by <u>Middle School</u> Science Teachers

Degrees Earned by <u>High School</u> Science Teachers

NSSME

Middle Grades Science Teachers With a Degree in Field

CS EDUCATION

High School Science Teachers With a Degree in Field

THE NATIONAL SURVEY OF CS EDUCATION

horizon INC.

Professional Development

Between 2012 and 2018:

- there was no change in the amount of PD secondary science teachers participated in.
- teachers became less likely to participate in study groups and coaching.
- there was no change in the percentage of schools offering local, science-focused PD.

Amount of PD in Previous Three Years: <u>Middle School Science</u> Teachers

Amount of PD in Previous Three Years: <u>High School</u> Science Teachers

CS EDUCATION

NSSME THE NATIONAL SCIENCE & MA

horizon

Types of PD in Previous Three Years: <u>Middle School</u> Science Teachers

2012 2018

Types of PD in Previous Three Years: <u>High School</u> Science Teachers

2012 2018

PD Workshops Offered Locally in Previous Three Years

In 2018, schools were more likely than in 2012 to offer non-college prep courses and advanced courses in several science disciplines.

High schools were much more likely in 2018 to offer engineering courses, including non-college prep, college prep, and advanced courses.

NSSME

horizon

High Schools Offering Coordinated/ Integrated/Interdisciplinary Science Courses

High Schools Offering Environmental Science/Ecology Courses

horizon

High Schools Offering Earth/Space Science Courses

High Schools Offering Engineering Courses

horizon

Access to AP and Special Opportunities

With the exception of access to AP Environmental Science (which increased), student access to AP courses did not change from 2012 to 2018.

Several special opportunities to take science/ engineering courses (e.g., dual enrollment, courses by telecommunications) became much more common in 2018.

Access to AP Courses

NSSME

INC.

Science Programs Offered at High Schools

Concurrent college credit/dual enrollment courses.*

Students can go to a Career and Tech Ed center for sci. and/or eng. courses.*

Students can go to a college or university for sci. and/or eng. courses.*

Science and/or engineering courses offered by telecommunications*

Students can go to another K–12 school for sci. and/or eng. courses.*

2012 2018

Science Instruction

Between 2012 and 2018, there was little change in science class activities in middle and high schools, with some exceptions, including:

- The likelihood of explaining a science idea to the whole class decreased.
- The likelihood of students working in small groups increased.

Middle School Class Activities: All or Almost All Lessons

2012 2018

High School Class Activities: All or Almost All Lessons

2012 2018

Adequacy of Resources

In 2018, middle school science teachers were more likely than in 2012 to view some resources as adequate:

- Equipment (e.g., thermometers, microscopes, beakers, Bunsen burners)
- Instructional technology (e.g., calculators, computers, probes/sensors)

In 2018, high school science teachers were more likely than in 2012 to view some resources as adequate:

- Equipment
- Consumable supplies
- Instructional technology

Classes in Which Teachers Feel Various Resources are Adequate: <u>Middle School</u>

Facilities (e.g., lab tables, electric outlets, faucets and sinks)

Equipment (e.g., thermometers, magnifying glasses, microscopes, beakers, photogate timers, Bunsen burners)*

Consumable supplies (e.g., chemicals, living organisms, batteries)

Instructional technology (e.g., calculators, computers, probes/sensors)*

2012 2018

Classes in Which Teachers Feel Various Resources are Adequate: <u>High School</u>

Facilities (e.g., lab tables, electric outlets, faucets and sinks)

Equipment (e.g., thermometers, magnifying glasses, microscopes, beakers, photogate timers, Bunsen burners)*

Consumable supplies (e.g., chemicals, living organisms, batteries)*

Instructional technology (e.g., calculators, computers, probes/sensors)*

2012 2018

Conclusions

The 2018 NSSME+ data point to several positive trends in secondary science, including:

- Increases in course taking and degrees earned among teachers
- Increased opportunities for students to take science courses by special means
- Less lecture and more group work
- More resources

The data also point to continued problem areas, including:

- Lack of diversity in teaching force
- Inadequate professional learning opportunities and participation

Novice Secondary Science Teachers

harizon RESEARCH, INC. INC.

Teacher Characteristics

The 2018 NSSME+ collected data on:

- Sex
- Race/ethnicity
- Age
- School Contexts
- Content background (certification, degrees and coursework)
- Beliefs
- Preparedness

Characteristics of the <u>Middle</u> <u>School</u> Teaching Force

	Percent of Teachers	
	Novice	Veteran
Sex		
Female	68	73
Male	32	25
Race/Ethnicity		
White	89	92
Black or African-American	11	7
Hispanic or Latino	8	6
Asian	2	1
American Indian/Alaskan Native	2	2
Native Hawaiian/Other Pacific Islander	1	0

horizon , INC.

Characteristics of the <u>Middle</u> <u>School</u> Teaching Force

Teacher Age*

horizon INC.

Middle School Contexts

	Percent of Teachers	
	Novice	Veteran
School Type		
Catholic	8	6
Non-Catholic Private	5	7
Public	88	87
Community Type		
Rural	31	24
Suburban	47	49
Urban	23	27

horizon RESEARCH, INC.

Characteristics of the <u>High School</u> Teaching Force

	Percent of Teachers	
	Novice	Veteran
Sex		
Female	58	56
Male	42	44
Race/Ethnicity		
White	87	93
Black or African-American	6	4
Hispanic or Latino	11	5
Asian	7	4
American Indian/Alaskan Native	2	2
Native Hawaiian/Other Pacific Islander	0	0

horizon , I N C .

Characteristics of the High School Teaching Force

INC.

Teacher Age*

<u>High School Contexts</u>

	Percent of Teachers	
	Novice	Veteran
School Type	6	9
Catholic	7	6
Non-Catholic Private	86	85
Public		
Community Type		
Rural	22	26
Suburban	42	49
Urban	36	26

harizon RESEARCH, INC.

Paths to Certification*

Paths to Certification*

horizon

Middle School Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

Students learn best when instruction is connected to their everyday lives

Teachers should ask student to support their conclusions with evidence

Students should learn science by doing science

Most class periods should provide opportunities for studenst to share their thinking and reasoning

Most class periods should have opportunities for students to apply ideas to real-world contexts

It is better for science instruction to focus on ideas in depth, even if it means covering fewer topics

Novice Veteran

Middle School Teachers Agreeing With Various Traditional Teaching Beliefs

Students should be given definitions for new scientific vocabulary at the beginning of instruction on an idea*

Hands-on/laboratory activities should used to reinforce ideas students have already learned*

Teachers should explain an idea to students before having them consider evidence related to the idea*

Students learn best in classes with students of similar abilities

Novice Veteran

Middle School Teacher Beliefs Composites About Teaching and Learning

High School Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

Teachers should ask student to support their conclusions with evidence

Students learn best when instruction is connected to their everyday lives

Students should learn science by doing science

Most class periods should provide opportunities for studenst to share their thinking and reasoning*

Most class periods should have opportunities for students to apply ideas to real-world contexts

It is better for science instruction to focus on ideas in depth, even if it means covering fewer topics

Novice Veteran

High School Teachers Agreeing With Various Traditional Teaching Beliefs

Students should be given definitions for new scientific vocabulary at the beginning of instruction on an idea*

Hands-on/laboratory activities should used to reinforce ideas students have already learned*

Students learn best in classes with students of similar abilities

Teachers should explain an idea to students before having them consider evidence related to the idea

Novice Veteran

<u>High School</u> Teacher Beliefs Composites About Teaching and Learning

Secondary Teacher Perceptions of Content Preparedness Composites

Middle School Teachers Feeling Very Well Prepared to Teach Chemistry Topics

Middle School Teachers Feeling Very Well Prepared for Instructional Tasks

Encourage participation of all students Use formative assessment* Encourage students' interest in science/engineering Develop students' conceptual understanding* Develop students' abilities to do science Differentiate science instruction* Develop students' awareness of STEM careers Provide instruction that is based on students' ideas Incorporate students' cultural backgrounds

Novice Veteran

High School Teachers Feeling Very Well Prepared for Instructional Tasks

Novice Veteran

Middle School Teachers Feeling Very Well Prepared to Monitor and Address Student Understanding in Most Recent Unit

Novice Veteran

High School Teachers Feeling Very Well Prepared to Monitor and Address Student Understanding in Most Recent Unit

Science Instruction

harizon RESEARCH, INC.

Middle School Classes with Heavy Emphasis on Instructional Objectives

Middle School Classes with Heavy **Emphasis on Instructional Objectives**

High School Classes with Heavy Emphasis on Instructional Objectives

High School Classes with Heavy Emphasis on Instructional Objectives

Secondary Teachers Incorporating Engineering into Science Instruction

NSSME

Support for Novice Secondary Teachers

horizon RESEARCH, INC.

Secondary Teacher Participation in Science PD in Previous Three Years

NSSME THE NATIONA

More than 35 hours of Science PD in Previous Three Years

EDUCATION

INC.

Duration of Formal Induction Programs

CS EDUCATION

NSSME THE NATION SCIENCE & N

horizon INC.

Supports Provided as Part of Formal Induction Programs

THE NATIONAL SURVEY OF ATICS EDUCATION

Some key differences between novices and veterans:

- Content preparedness/background
- Pedagogical preparedness
- Instructional beliefs

Many commonalities which suggest room for professional growth

• PD data suggest teachers are not getting the sustained support they need to "mature" as professionals throughout their teaching careers.

Given the large percentage of novice teachers in schools that offer induction programs, perhaps it is possible to leverage induction program supports:

- School-based mentors might devote time to helping novices increase their science content knowledge or diversify their science teaching practices
- School leaders may strategically choose teachers for novices to observe when they are given release time to do so

Factors That Predict the Extent to Which Secondary Teachers' Engage Students in the Science Practices

horizon

The 2018 NSSME+ collected data about the nature of instruction in secondary science classes

Study also collected tons of data about teachers, schools, and instructional resources

This analysis looked at school, class, and teacher characteristics that are associated with instructional practices

Composite variables measuring:

- 1. Reform-oriented instructional objectives
- 2. Extent instruction engages students with the practices of science

Reform-Oriented Instructional Objectives

How much emphasis each would receive over the entire course:

- 1. Understanding science concepts
- 2. Learning about different fields of science/engineering
- Learning how to do science (develop scientific questions; design and conduct investigations; analyze data; develop models, explanations, and scientific arguments)
- 4. Learning how to do engineering (e.g., identify criteria and constraint, design solutions, optimize solutions)
- 5. Learning about real-life applications of science/engineering
- 6. Increasing students' interest in science/engineering
- 7. Developing students' confidence that they can successfully pursue careers in science/engineering

Engagement in Science Practices

How often students are engaged in aspects of the science practices:

- 1. Asking questions/defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations/designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Independent Variables

Schools

- School size
- Community type
- Public vs. private school
- Spending per pupil
- Extent factors are problematic
- Block scheduling (HS only)

Teachers

- Years of K-12 science teaching experience
- Science-related degree
- Perceptions of preparedness
- Teaching beliefs
- Science-related job before teaching
- Amount of science PD
- Race/sex

THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

Classes

- Subject matter
- Course level (HS only)
- Prior achievement level of students
- Class size
- Percent of students in class from race/ethnicity groups historically underrepresented in STEM
- Curriculum control
- Pedagogy control
- Number of instructional materials used often
- Adequacy of resources
- Extent effective instruction is promoted

Reform-Oriented Objectives Receiving a Heavy Emphasis

Middle High

Reform-Oriented Instructional Objectives Composite: Middle School

ICS EDUCATION

Percent of Total Points Possible

harizon RESEARCH, INC.

Reform-Oriented Instructional Objectives Composite: High School

ATICS EDUCATION

Percent of Total Points Possible

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Conducting Investigations and Analyzing Data: Weekly

Middle High

Engagement in Science Practices

Students are often engaged in aspects of science related to conducting investigations and analyzing data

Students tend to not be engaged very often in aspects of science related to evaluating the strengths/limitations of evidence and the practice of argumentation

Evaluating Evidence and Arguing: Weekly

■ Middle ■ High

Engaging Students in the Practices Science Composite: Middle School

Percent of Total Points Possible

Engaging Students in the Practices Science Composite: High School

Percent of Total Points Possible

School Independent Variables

Research, INC.

School Independent Variables

	Middle Schools	High Schools
Average Number of Students	460	687
Average Percent FRL	\$7.22	\$11.62

Research, INC.

School Independent Variables

	Percent of Middle Schools	Percent of High Schools
Community Type		
Rural	28	37
Suburban	42	37
Urban	30	26
School Type		
Public	73	81
Private	27	19
Schedule Type		
Block	n/a	33
Traditional	n/a	67

CS EDUCATION

School Mean Scores for Factors Affecting Instruction Composites

Teacher Independent Variables

Research, INC.

Perceptions of Preparedness: Very Well Prepared to Teach Earth/Space Science Topics

Perceptions of Preparedness: Very Well Prepared to Teach Biology/Life Science Topics

Perceptions of Preparedness: Very Well Prepared to Teach Chemistry Topics

Perceptions of Preparedness: Very Well Prepared to Teach Physics Topics

Environmental and resource issues

horizon - CFARCH, INC.

Perceptions of Preparedness: Very Well Prepared to Use Student-Centered Pedagogies

Develop students' conceptual 42 58 understanding Use formative assessment to monitor 48 52 student learning 38 Develop students' abilities to do science 46 Encourage students' interest in science 42 44 and/or engineering Encourage participation of all students in 44 43 science and/or engineering 0 20 40 60 80 Percent of Teachers

Middle High

E NATIONAL SURVEY OF IENCE & MATHEMATICS EDUCATION

100

Perceptions of Preparedness: Very Well Prepared to Use Student-Centered Pedagogies

Perceptions of Preparedness: Very Well Prepared for Various Tasks in the Most Recent Unit

Assess student understanding at the conclusion of the unit Implement the instructional materials to be used during the unit

Monitor student understanding

Anticipate student difficulties with science ideas/procedures Find out what students thought or already knew about the key science ideas

Middle High

Teachers Agreeing With Various Reform-Oriented Teaching Beliefs

Teachers should ask students to support conclusions with evidence	
- Students learn best when instruction is connected to their everyday lives	
- Students should learn science by doing science	
Most class periods should have students share their	

thinking and reasoning

It is better for instruction to focus on ideas in depth, even if it means covering fewer topics

Middle High

Teachers Agreeing With Various Traditional Teaching Beliefs

Science Background

harian INC.

Hours of Science PD in the Previous 3 Years

Teacher Characteristics

NSSME SCIEF

horizon , INC. R E S

harizon RESEARCH, INC.

Class Independent Variables

Research, INC.

THE NATIONAL SURVEY OF CS EDUCATION

INC.

Prior Achievement Grouping in Science Classes

CS EDUCATION

NSSME THE NATIONAL SCIENCE & MAT

Class Size

horizon , I N C . RES СН

Average Percentage of Historically Underrepresented Students in Class

Classes in Which Teachers Feel Strong Control Over Curriculum

Classes in Which Teachers Feel Strong Control Over Pedagogy

Number of Types of Instructional **Materials Used Often**

CS EDUCATION

, I N C .

Classes in Which Teachers Feel Various Resources are Adequate

Class Mean Scores for Factors Promoting Effective Instruction Composites

S EDUCATION

Middle School Path Model

harizon RESEARCH, INC.

Research, INC.

Research, INC.

М

F

Research, INC.

M I D L E

NSSME

harizon RESEARCH, INC.

М

F

harizon RESEARCH, INC.

High School Path Model

Research, INC.

harizon RESEARCH, INC.

Research, INC.

NSSME THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION

harizon RESEARCH, INC.

NSSME THE NATIONAL SURVEY OF SCIENCE & MATHEMATICS EDUCATION RESEARCH, INC.

H I G H

harizon RESEARCH, INC.

Total Effects on Student Engagement in Science Practices

	Middle	High
Perceptions of Preparedness	0.370	0.341
Reform-Oriented Teaching Beliefs	0.129	0.188
Amount of Science PD in Previous 3 Years		
Less than 35 hours		0.157
35 or more hours		0.184
Reform-Oriented Instructional Objectives	0.390	0.405
Curriculum Control		0.180
Pedagogy Control	-0.337	-0.121
Number of instructional materials used often (vs. none)		
One	0.090	-0.254
Two or three	0.101	-0.286
Four or more	0.198	-0.064
Adequacy of Resources for Instruction	-0.229	
Extent Effective Instruction is Promoted	0.380	

, I N C .